Show simple item record

Sekvenční metody Monte Carlo
dc.contributor.advisorBeneš, Viktor
dc.creatorCoufal, David
dc.date.accessioned2017-05-16T06:18:42Z
dc.date.available2017-05-16T06:18:42Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/55265
dc.description.abstractNázev práce: Sekvenční metody Monte Carlo Autor: David Coufal Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: prof. RNDr. Viktor Beneš, DrSc. Abstrakt: Práce shrnuje teoretické základy sekvenčních metod Monte Carlo se zaměřením na použití v oblasti částicových filtrů a základní výsledky z oblasti neparametrických jádrových odhadů hustot pravděpodobnostních rozdělení. Přehled výsledků tvoří základ ke zkoumání použití jádrových metod pro aprox- imaci hustot rozdělení částicových filtrů. Hlavními výsledky práce jsou důkaz konvergence jádrových odhadů k příslušným teoretickým hustotám a popis vývoje chyby aproximace v souvislosti s časovou evolucí filtru. Práce je do- plněna experimentální částí demonstrující použití popsaných algoritmů formou simulací ve výpočetním prostředí MATLABR⃝ . Klíčová slova: sekvenční metody Monte Carlo, částicové filtry, neparametrické jádrové odhadycs_CZ
dc.description.abstractTitle: Sequential Monte Carlo Methods Author: David Coufal Department: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Viktor Beneš, DrSc. Abstract: The thesis summarizes theoretical foundations of sequential Monte Carlo methods with a focus on the application in the area of particle filters; and basic results from the theory of nonparametric kernel density estimation. The summary creates the basis for investigation of application of kernel meth- ods for approximation of densities of distributions generated by particle filters. The main results of the work are the proof of convergence of kernel estimates to related theoretical densities and the specification of the development of approx- imation error with respect to time evolution of a filter. The work is completed by an experimental part demonstrating the work of presented algorithms by simulations in the MATLABR⃝ computational environment. Keywords: sequential Monte Carlo methods, particle filters, nonparametric kernel estimatesen_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectsekvenční metody Monte Carlocs_CZ
dc.subjectčásticové filtrycs_CZ
dc.subjectneparametrické jádrové odhadycs_CZ
dc.subjectsequential Monte Carlo methodsen_US
dc.subjectparticle filtersen_US
dc.subjectnonparametric kernel estimatesen_US
dc.titleSekvenční metody Monte Carloen_US
dc.typediplomová prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-05-27
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId106507
dc.title.translatedSekvenční metody Monte Carlocs_CZ
dc.contributor.refereeProkešová, Michaela
dc.identifier.aleph001591473
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Sekvenční metody Monte Carlo Autor: David Coufal Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: prof. RNDr. Viktor Beneš, DrSc. Abstrakt: Práce shrnuje teoretické základy sekvenčních metod Monte Carlo se zaměřením na použití v oblasti částicových filtrů a základní výsledky z oblasti neparametrických jádrových odhadů hustot pravděpodobnostních rozdělení. Přehled výsledků tvoří základ ke zkoumání použití jádrových metod pro aprox- imaci hustot rozdělení částicových filtrů. Hlavními výsledky práce jsou důkaz konvergence jádrových odhadů k příslušným teoretickým hustotám a popis vývoje chyby aproximace v souvislosti s časovou evolucí filtru. Práce je do- plněna experimentální částí demonstrující použití popsaných algoritmů formou simulací ve výpočetním prostředí MATLABR⃝ . Klíčová slova: sekvenční metody Monte Carlo, částicové filtry, neparametrické jádrové odhadycs_CZ
uk.abstract.enTitle: Sequential Monte Carlo Methods Author: David Coufal Department: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Viktor Beneš, DrSc. Abstract: The thesis summarizes theoretical foundations of sequential Monte Carlo methods with a focus on the application in the area of particle filters; and basic results from the theory of nonparametric kernel density estimation. The summary creates the basis for investigation of application of kernel meth- ods for approximation of densities of distributions generated by particle filters. The main results of the work are the proof of convergence of kernel estimates to related theoretical densities and the specification of the development of approx- imation error with respect to time evolution of a filter. The work is completed by an experimental part demonstrating the work of presented algorithms by simulations in the MATLABR⃝ computational environment. Keywords: sequential Monte Carlo methods, particle filters, nonparametric kernel estimatesen_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990015914730106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV