Zobrazit minimální záznam

The role of mitochondrial metabolism in initiation and adaptation to hypoxic conditions.
dc.contributor.advisorNovák, Petr
dc.creatorRohlenová, Terezie
dc.date.accessioned2021-03-26T07:33:09Z
dc.date.available2021-03-26T07:33:09Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/54824
dc.description.abstractS patologickou hypoxií se často setkáváme v případech infarktu, mozkové mrtvice, ale i při masivní invazi tumoru, z důvodu nedostatečné angiogeneze. Pro přežití buňky v hypoxii je klíčová aktivace faktoru HIF-1. Tento faktor modeluje energetický metabolismus ve prospěch rychle probíhající glykolýzy (s přispěním glutaminolýzy), která zajišťuje buňce dostatek ATP i "stavebních kamenů", zároveň potlačuje Krebsův cyklus a respiraci, neboť buňka má nedostatek O2. Tato práce se zabývá energetickým metabolismem nádorových buněk HepG2 (pocházejících z jaterního karcinomu) pěstovaných v médiích s energetickým substrátem glukosou nebo galaktosou (a také glutaminem a pyruvátem) za podmínek mírné hypoxie (5% O2). Buňky HepG2 za normoxických podmínkách využívají pro výrobu ATP a "stavebních kamenů" zejména oxidační metabolismus. Přestože jsme dokázali, že u všech buněk HepG2 v hypoxii dochází k aktivaci HIF-1, u buněk pěstovaných v médiu s obsahem galaktosy (a glutaminu) nedochází k přesmyku oxidačního metabolismu na aerobní glykolýzu s potlačenou respirací, tak jako u buněk kultivovaných s glukosou. Zjistili jsme, že se zachovanou respirací a oxidativní fosforylací buněk HepG2 v galaktose souvisí i zvýšená aktivita a integrita mitochondrií, zvýšená maximální kapacita a rezervní kapacita respiračního řetězce....cs_CZ
dc.description.abstractWe can meet pathological hypoxia in the cases of hearth attack, ischemic stroke, but also during tumor invasion, thanks to insufficient angiogenesis. The activation of HIF- 1 factor during hypoxic conditions is crucial for the cell survival. This factor modulates energetic metabolism in favor of fast progressing glycolysis (with the contribution of glutaminolysis) which provides to cell enough ATP and "building blocks", while suppressing Krebs cycle and respiration because of shortage of oxygen. The thesis studies energetic metabolism of HepG2 cells (derived from liver carcinoma) which are cultivated in the media with various energetic substrates, i. e. glucose or galactose (always together with glutamine and pyruvate) under the hypoxic conditions (5% O2). HepG2 cells use particularly oxidative metabolism for ATP and "building blocks" production under the normoxic conditions while hypoxic environment causes metabolic shift in glycemic condition. Interestingly, cells cultured in galactose (glutamine) didn't switch the energy metabolism from oxidative to aerobic glycolysis such as cells cultivated in glucose, although HIF-1 factor was stabilized. We found that enhanced activity and integrity of mitochondria, enhanced maximal capacity and reserve capacity of respiration chain correlates with...en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Přírodovědecká fakultacs_CZ
dc.subjectHypoxiaen_US
dc.subjectHepG2en_US
dc.subjectHIF-1en_US
dc.subjectenergetic metabolismen_US
dc.subjectgalactoseen_US
dc.subjectglucoseen_US
dc.subjectmitochondriaen_US
dc.subjectaerobic glycolysisen_US
dc.subjecthypoxiecs_CZ
dc.subjectHepG2cs_CZ
dc.subjectHIF-1cs_CZ
dc.subjectenergetický metabolismuscs_CZ
dc.subjectgalaktosacs_CZ
dc.subjectglukosacs_CZ
dc.subjectmitochondriecs_CZ
dc.subjectaerobní glykolýzacs_CZ
dc.titleÚloha mitochondriálního metabolismu v iniciaci a adaptaci buněk na hypoxii.cs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-05-27
dc.description.departmentKatedra biochemiecs_CZ
dc.description.departmentDepartment of Biochemistryen_US
dc.description.facultyPřírodovědecká fakultacs_CZ
dc.description.facultyFaculty of Scienceen_US
dc.identifier.repId115958
dc.title.translatedThe role of mitochondrial metabolism in initiation and adaptation to hypoxic conditions.en_US
dc.contributor.refereeRohlena, Jakub
dc.identifier.aleph001604044
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineBiochemistryen_US
thesis.degree.disciplineBiochemiecs_CZ
thesis.degree.programBiochemiecs_CZ
thesis.degree.programBiochemistryen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csPřírodovědecká fakulta::Katedra biochemiecs_CZ
uk.taxonomy.organization-enFaculty of Science::Department of Biochemistryen_US
uk.faculty-name.csPřírodovědecká fakultacs_CZ
uk.faculty-name.enFaculty of Scienceen_US
uk.faculty-abbr.csPřFcs_CZ
uk.degree-discipline.csBiochemiecs_CZ
uk.degree-discipline.enBiochemistryen_US
uk.degree-program.csBiochemiecs_CZ
uk.degree-program.enBiochemistryen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csS patologickou hypoxií se často setkáváme v případech infarktu, mozkové mrtvice, ale i při masivní invazi tumoru, z důvodu nedostatečné angiogeneze. Pro přežití buňky v hypoxii je klíčová aktivace faktoru HIF-1. Tento faktor modeluje energetický metabolismus ve prospěch rychle probíhající glykolýzy (s přispěním glutaminolýzy), která zajišťuje buňce dostatek ATP i "stavebních kamenů", zároveň potlačuje Krebsův cyklus a respiraci, neboť buňka má nedostatek O2. Tato práce se zabývá energetickým metabolismem nádorových buněk HepG2 (pocházejících z jaterního karcinomu) pěstovaných v médiích s energetickým substrátem glukosou nebo galaktosou (a také glutaminem a pyruvátem) za podmínek mírné hypoxie (5% O2). Buňky HepG2 za normoxických podmínkách využívají pro výrobu ATP a "stavebních kamenů" zejména oxidační metabolismus. Přestože jsme dokázali, že u všech buněk HepG2 v hypoxii dochází k aktivaci HIF-1, u buněk pěstovaných v médiu s obsahem galaktosy (a glutaminu) nedochází k přesmyku oxidačního metabolismu na aerobní glykolýzu s potlačenou respirací, tak jako u buněk kultivovaných s glukosou. Zjistili jsme, že se zachovanou respirací a oxidativní fosforylací buněk HepG2 v galaktose souvisí i zvýšená aktivita a integrita mitochondrií, zvýšená maximální kapacita a rezervní kapacita respiračního řetězce....cs_CZ
uk.abstract.enWe can meet pathological hypoxia in the cases of hearth attack, ischemic stroke, but also during tumor invasion, thanks to insufficient angiogenesis. The activation of HIF- 1 factor during hypoxic conditions is crucial for the cell survival. This factor modulates energetic metabolism in favor of fast progressing glycolysis (with the contribution of glutaminolysis) which provides to cell enough ATP and "building blocks", while suppressing Krebs cycle and respiration because of shortage of oxygen. The thesis studies energetic metabolism of HepG2 cells (derived from liver carcinoma) which are cultivated in the media with various energetic substrates, i. e. glucose or galactose (always together with glutamine and pyruvate) under the hypoxic conditions (5% O2). HepG2 cells use particularly oxidative metabolism for ATP and "building blocks" production under the normoxic conditions while hypoxic environment causes metabolic shift in glycemic condition. Interestingly, cells cultured in galactose (glutamine) didn't switch the energy metabolism from oxidative to aerobic glycolysis such as cells cultivated in glucose, although HIF-1 factor was stabilized. We found that enhanced activity and integrity of mitochondria, enhanced maximal capacity and reserve capacity of respiration chain correlates with...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Přírodovědecká fakulta, Katedra biochemiecs_CZ
thesis.grade.code2
dc.contributor.consultantPlecitá, Lydie
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990016040440106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV