Show simple item record

Laplaceova transformace na prostorech funkcí
dc.contributor.advisorPick, Luboš
dc.creatorBuriánková, Eva
dc.date.accessioned2017-05-16T03:08:27Z
dc.date.available2017-05-16T03:08:27Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/54641
dc.description.abstractV této práci studujeme chování Laplaceovy transformace na Banachových prostorech funkcí invariantních vůči přerovnání. Náš hlavní cíl je popsat optimální cílový prostor, příslušející zadanému prostoru v kategorii Banachových prostorů funkcí invariantních vůči přerovnání. Nejdříve dokážeme klíčový odhad nerostoucího přerovnání obrazu dané funkce při Laplaceově transformaci. Tento odhad dále použijeme ke konstrukci optimálního cílového prostoru. Tento obecný postup aplikujeme na určení optimálních vztahů mezi Lebesgueovými a Lorentzovými prostory při Laplaceově transformaci.cs_CZ
dc.description.abstractIn this manuscript we study the action of the Laplace transform on rearrangement-invariant Banach function spaces. Our principal goal is to characterize the optimal range space corresponding to a given domain space within the category of rearrangement-invariant Banach function spaces. We first prove a key pointwise estimate of the non-increasing rearrangement of the image under the Laplace transform of a given function. Then we use this inequality to carry out the construction of the optimal range space. We apply this general result to establish an optimality relation between the Lebesgue and Lorentz spaces under the Laplace transform.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectLaplaceova transformacecs_CZ
dc.subjectLebesgueovy prostorycs_CZ
dc.subjectLorentzovy prostorycs_CZ
dc.subjectinterpolacecs_CZ
dc.subjectK-funkcionálcs_CZ
dc.subjectthe Laplace transformen_US
dc.subjectLebesgue spacesen_US
dc.subjectLorentz spacesen_US
dc.subjectinterpolationen_US
dc.subjectthe K-functionalen_US
dc.titleLaplaceova transformace na prostorech funkcíen_US
dc.typebakalářská prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-06-26
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId124153
dc.title.translatedLaplaceova transformace na prostorech funkcícs_CZ
dc.contributor.refereeNekvinda, Aleš
dc.identifier.aleph001604702
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci studujeme chování Laplaceovy transformace na Banachových prostorech funkcí invariantních vůči přerovnání. Náš hlavní cíl je popsat optimální cílový prostor, příslušející zadanému prostoru v kategorii Banachových prostorů funkcí invariantních vůči přerovnání. Nejdříve dokážeme klíčový odhad nerostoucího přerovnání obrazu dané funkce při Laplaceově transformaci. Tento odhad dále použijeme ke konstrukci optimálního cílového prostoru. Tento obecný postup aplikujeme na určení optimálních vztahů mezi Lebesgueovými a Lorentzovými prostory při Laplaceově transformaci.cs_CZ
uk.abstract.enIn this manuscript we study the action of the Laplace transform on rearrangement-invariant Banach function spaces. Our principal goal is to characterize the optimal range space corresponding to a given domain space within the category of rearrangement-invariant Banach function spaces. We first prove a key pointwise estimate of the non-increasing rearrangement of the image under the Laplace transform of a given function. Then we use this inequality to carry out the construction of the optimal range space. We apply this general result to establish an optimality relation between the Lebesgue and Lorentz spaces under the Laplace transform.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV