Show simple item record

Choice of the SUPG parameter for higher order finite elements
dc.contributor.advisorKnobloch, Petr
dc.creatorKohutka, Jiří
dc.date.accessioned2017-05-15T15:09:40Z
dc.date.available2017-05-15T15:09:40Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/52109
dc.description.abstractV této práci se zabýváme metodou konečných prvků Streamline Upwind/Petrov-Galerkin (SUPG) a používáme ji k řešení stacionární okrajové úlohy pro rovnici konvekce-difuze s převažující konvekcí s Dirichletovou okrajovou podmínkou na celé hranici omezené polyedrické výpočetní oblasti dimenze 1 resp. 2. Uvažujeme lagrangeovské kvadratické konečné prvky na úsečkách resp. trojúhelnících. Jádrem práce je návrh volit stabilizační parametr metody SUPG ve výtokové hraniční vstvě jako funkci afinní po elementech a ve zbytku výpočetní oblasti jako funkci konstantní po elementech. Ukážeme, že tato volba dává přesnější řešení než volba stabilizačního parametru konstantního na všech elementech. 1cs_CZ
dc.description.abstractIn this work, we deal with the finite element method Streamline Upwind/Petrov-Galerkin (SUPG) and use it to solve boundary value problem for the stationary convection-diffusion equation with dominant convection with Dirichlet boundary condition on the whole boundary of bounded polyhedral computational domain of dimension 1 and 2, respectively. We consider a quadratic Lagrangian finite elements on the line segments and triangles, respectively. The core of the work is a proposition of choice of stabilizing parameter of SUPG method as an elementwise affine function in outflow boundary layer and as an elementwise constant function in the rest of the computational domain. We show that this choice gives a more accurate solution than the choice of the stabilization parameter as a constant in each element. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectkonvekce-difuzecs_CZ
dc.subjectStreamline Upwindcs_CZ
dc.subjectPetrov-Galerkincs_CZ
dc.subjectSUPGcs_CZ
dc.subjectMKPcs_CZ
dc.subjectnefyzikální oscilacecs_CZ
dc.subjectmezní vrstvacs_CZ
dc.subjectconvection-diffusionen_US
dc.subjectStreamline Upwinden_US
dc.subjectPetrov-Galerkinen_US
dc.subjectSUPGen_US
dc.subjectFEMen_US
dc.subjectnonphysical oscillationsen_US
dc.subjectboundary layeren_US
dc.titleVolba parametru metody SUPG pro konečné prvky vyššího řádu přesnostics_CZ
dc.typediplomová prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-01-30
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47968
dc.title.translatedChoice of the SUPG parameter for higher order finite elementsen_US
dc.contributor.refereeDolejší, Vít
dc.identifier.aleph001679759
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical modelling in physics and technologyen_US
thesis.degree.disciplineMatematické modelování ve fyzice a technicecs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické modelování ve fyzice a technicecs_CZ
uk.degree-discipline.enMathematical modelling in physics and technologyen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se zabýváme metodou konečných prvků Streamline Upwind/Petrov-Galerkin (SUPG) a používáme ji k řešení stacionární okrajové úlohy pro rovnici konvekce-difuze s převažující konvekcí s Dirichletovou okrajovou podmínkou na celé hranici omezené polyedrické výpočetní oblasti dimenze 1 resp. 2. Uvažujeme lagrangeovské kvadratické konečné prvky na úsečkách resp. trojúhelnících. Jádrem práce je návrh volit stabilizační parametr metody SUPG ve výtokové hraniční vstvě jako funkci afinní po elementech a ve zbytku výpočetní oblasti jako funkci konstantní po elementech. Ukážeme, že tato volba dává přesnější řešení než volba stabilizačního parametru konstantního na všech elementech. 1cs_CZ
uk.abstract.enIn this work, we deal with the finite element method Streamline Upwind/Petrov-Galerkin (SUPG) and use it to solve boundary value problem for the stationary convection-diffusion equation with dominant convection with Dirichlet boundary condition on the whole boundary of bounded polyhedral computational domain of dimension 1 and 2, respectively. We consider a quadratic Lagrangian finite elements on the line segments and triangles, respectively. The core of the work is a proposition of choice of stabilizing parameter of SUPG method as an elementwise affine function in outflow boundary layer and as an elementwise constant function in the rest of the computational domain. We show that this choice gives a more accurate solution than the choice of the stabilization parameter as a constant in each element. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
dc.identifier.lisID990016797590106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV