Show simple item record

Tall rings
dc.contributor.advisorŽemlička, Jan
dc.creatorPenk, Tomáš
dc.date.accessioned2017-05-08T16:54:27Z
dc.date.available2017-05-08T16:54:27Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/50273
dc.description.abstractPerfektní a max okruhy jsou známy přes padesát let. Jejich teorie se stále intenzivně studuje. Podmínky, které je definují, jsou přitom zajímavé hlavně při studiu modulů, které nejsou noetherovské. V této práci nejprve shrneme základní poznatky o okruzích a modulech, přičemž se předpokládají předchozí znalosti pouze na úrovni základního kurzu. Poté, co shrneme některé elementární výsledky týkající se noetherovských modulů, budeme připraveni na definici vysokých modulů a vysokých okruhů. Dále ukážeme, že jsou v určitém směru zobecněním perfektních a max okruhů. Uvedeme některé příklady vysokých a nevysokých okruhů, přičemž se podrobněji zaměříme na komutativní okruhy. Poznatky, které tak získáme, se pokusíme zobecnit a využít je při hledání některých nutných a některých postačujících podmínek pro to, abychom o komutativním okruhu mohli prohlásit, zda je či není vysoký. Na závěr ukážeme, že pro noetherovské komutativní okruhy jsou tyto podmínky navzájem ekvivalentní, a dávají tak k pojmu vysoký okruh ekvivalentní charakterizaci.cs_CZ
dc.description.abstractPerfect and max rings are known for over fifty years. Their theory is being steadily and intensively studied. The conditions defining them are mainly interesting while studying non-noetherian modules. In this work we summarize at first basic information about rings and modules with previous knowledge requiring just in elementary level. After summing up basic results in the theory of noetherian modules we will be prepaired for the definition of tall modules and tall rings. We show then that they are a generalization of prefect and max rings in a specific way. We bring out some examples of tall and non-tall rings with accenting commutative rings. Information which we obtain we try to generalize and use for searching some necessary and some sufficient conditions with the goal to be able to say about a commutative ring if it is tall or not. At the end we point out that in case of a commutative noetherian ring they are equivalent to each other and they give together to the concept tall ring an equivalent characterization.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectnenoetherovský modulcs_CZ
dc.subjectvysoký modulcs_CZ
dc.subjectvysoký okruhcs_CZ
dc.subjectkomutativní noetherovský vysoký okruhcs_CZ
dc.subjectnon-noetherian moduleen_US
dc.subjecttall moduleen_US
dc.subjecttall ringen_US
dc.subjectcommutative noetherian tall ringen_US
dc.titleVysoké okruhycs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-14
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId90482
dc.title.translatedTall ringsen_US
dc.contributor.refereeŠťovíček, Jan
dc.identifier.aleph001386601
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPerfektní a max okruhy jsou známy přes padesát let. Jejich teorie se stále intenzivně studuje. Podmínky, které je definují, jsou přitom zajímavé hlavně při studiu modulů, které nejsou noetherovské. V této práci nejprve shrneme základní poznatky o okruzích a modulech, přičemž se předpokládají předchozí znalosti pouze na úrovni základního kurzu. Poté, co shrneme některé elementární výsledky týkající se noetherovských modulů, budeme připraveni na definici vysokých modulů a vysokých okruhů. Dále ukážeme, že jsou v určitém směru zobecněním perfektních a max okruhů. Uvedeme některé příklady vysokých a nevysokých okruhů, přičemž se podrobněji zaměříme na komutativní okruhy. Poznatky, které tak získáme, se pokusíme zobecnit a využít je při hledání některých nutných a některých postačujících podmínek pro to, abychom o komutativním okruhu mohli prohlásit, zda je či není vysoký. Na závěr ukážeme, že pro noetherovské komutativní okruhy jsou tyto podmínky navzájem ekvivalentní, a dávají tak k pojmu vysoký okruh ekvivalentní charakterizaci.cs_CZ
uk.abstract.enPerfect and max rings are known for over fifty years. Their theory is being steadily and intensively studied. The conditions defining them are mainly interesting while studying non-noetherian modules. In this work we summarize at first basic information about rings and modules with previous knowledge requiring just in elementary level. After summing up basic results in the theory of noetherian modules we will be prepaired for the definition of tall modules and tall rings. We show then that they are a generalization of prefect and max rings in a specific way. We bring out some examples of tall and non-tall rings with accenting commutative rings. Information which we obtain we try to generalize and use for searching some necessary and some sufficient conditions with the goal to be able to say about a commutative ring if it is tall or not. At the end we point out that in case of a commutative noetherian ring they are equivalent to each other and they give together to the concept tall ring an equivalent characterization.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV