Show simple item record

Numerical solution of ordinary differential equations
dc.contributor.advisorFeistauer, Miloslav
dc.creatorMonhartová, Petra
dc.date.accessioned2017-05-08T16:24:42Z
dc.date.available2017-05-08T16:24:42Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/50191
dc.description.abstractV předložené práci studujeme numerické metody pro řešení obyčejných diferenciálních rovnic s počátečními podmínkami. Pomocí Tay- lorova vzorce odvodíme některé jednokrokové numerické metody. Srovnáme numerická řešení vypočítaná pomocí explicitní Eulerovy metody a impli- citní Eulerovy metody. Budeme se zabývat Rungeovo-Kuttovými metodami 2. a 4. řádu. Zjistíme, jak přesně řešení získané pomocí těchto metod aproxi- muje přesné řešení obyčejných diferenciálních rovnic. Dále studujeme odhady chyby těchto numerických řešení obyčejných diferenciálních rovnic pomocí metody polovičního kroku. 1cs_CZ
dc.description.abstractIn the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleNumerické řešení obyčejných diferenciálních rovniccs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-06
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId42702
dc.title.translatedNumerical solution of ordinary differential equationsen_US
dc.contributor.refereeJanovský, Vladimír
dc.identifier.aleph001384461
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csV předložené práci studujeme numerické metody pro řešení obyčejných diferenciálních rovnic s počátečními podmínkami. Pomocí Tay- lorova vzorce odvodíme některé jednokrokové numerické metody. Srovnáme numerická řešení vypočítaná pomocí explicitní Eulerovy metody a impli- citní Eulerovy metody. Budeme se zabývat Rungeovo-Kuttovými metodami 2. a 4. řádu. Zjistíme, jak přesně řešení získané pomocí těchto metod aproxi- muje přesné řešení obyčejných diferenciálních rovnic. Dále studujeme odhady chyby těchto numerických řešení obyčejných diferenciálních rovnic pomocí metody polovičního kroku. 1cs_CZ
uk.abstract.enIn the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: dspace (at) is.cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV