dc.contributor.advisor | Zahradník, Petr | |
dc.creator | Šiklová, Renata | |
dc.date.accessioned | 2017-05-08T16:16:52Z | |
dc.date.available | 2017-05-08T16:16:52Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/50160 | |
dc.description.abstract | In this work we will get familiarized with a discrete valuation of options. A power- ful and widely applicable numerical method known as the binomial model will be established. Starting with a basic economic idea of non-arbitrage principle we build a risk-neutral world and develop the binomial model for call options. The general binomial model is extended into a trinomial model and there are several parame- terizations that are actually used in practice, provided for both of them. Great emphasis is also focused on a theoretical background. The theoretical knowledge, that will be introduced here in the discrete world, one can regard as basis for con- tinues models. The consequences of probability theory and risk-neutral valuation appear in the valuation of American options. There are three ultimate goals of this work: construction of the model itself, its implementation and an overview of the theoretical background. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | opce | cs_CZ |
dc.subject | binomické modely | cs_CZ |
dc.subject | rizikově neutrální oceňování | cs_CZ |
dc.subject | martingaly | cs_CZ |
dc.subject | options | en_US |
dc.subject | binomial models | en_US |
dc.subject | risk-neutral valuation | en_US |
dc.subject | martingale | en_US |
dc.title | Oceňování opcí: diskrétní případ | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-12 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 91790 | |
dc.title.translated | Options Valuation: The Discrete case | en_US |
dc.contributor.referee | Dostál, Petr | |
dc.identifier.aleph | 001385630 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Financial Mathematics | en_US |
thesis.degree.discipline | Finanční matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Finanční matematika | cs_CZ |
uk.degree-discipline.en | Financial Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.en | In this work we will get familiarized with a discrete valuation of options. A power- ful and widely applicable numerical method known as the binomial model will be established. Starting with a basic economic idea of non-arbitrage principle we build a risk-neutral world and develop the binomial model for call options. The general binomial model is extended into a trinomial model and there are several parame- terizations that are actually used in practice, provided for both of them. Great emphasis is also focused on a theoretical background. The theoretical knowledge, that will be introduced here in the discrete world, one can regard as basis for con- tinues models. The consequences of probability theory and risk-neutral valuation appear in the valuation of American options. There are three ultimate goals of this work: construction of the model itself, its implementation and an overview of the theoretical background. 1 | en_US |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990013856300106986 | |