Zobrazit minimální záznam

The undecidability of the field of rationals
dc.contributor.advisorŠvejdar, Vítězslav
dc.creatorJurenka, David
dc.date.accessioned2021-05-19T16:03:06Z
dc.date.available2021-05-19T16:03:06Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/20.500.11956/4988
dc.description.abstractOtázka rozhodnutelnosti, tj. otázka, zda existuje algoritmus, který by byl schopen rozhodnout o platnosti každé prvořádové predikátové formule, se dostala na výsluní pozornosti matematiků ve dvacátých letech minulého století. Spolu s ní byla zkoumána i rozhodnutelnost druhořádových formulí a obecně jakéhokoli matematického tvrzení. Souhrnně byly tyto otázky označovány jako Hilbertův Entscheidungsproblem a ještě roku 1930 Hilbert věřil v jejich kladné řešení. Roku 1936 však Alonzo Church ukázal, že samotná predikátová logika prvního řádu je nerozhodnutelná, a téhož roku pak Alan Turing představil dnes již klasický nerozhodnutelný problém, problém zastavení. Oba při tom ve svých pracech využili myšlenek, které formuloval Kurt Godel ve svém důkazu neúplnosti aritmetiky. V otázce rozhodnutelnosti základních aritmetických struktur přinesl první významný výsledek Mojzesz Presburger, který roku 1929 dokázal rozhodnutelnost přirozených čísel s operací sčítání a konstantami O a 1. Nicméně hned následujícího roku vyplynulo z Godelových výsledků, že tatáž struktura včetně operace násobení již rozhodnutelná být nemůže. Tím byla zároveň vyřešena i otázka rozhodnutelnosti čísel celých, neboť pojem přirozeného čísla je v této struktuře definovatelný (viz kapitolu 4.2), a tak je možno v celých číslech reformulovat každou...cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Filozofická fakultacs_CZ
dc.titleNerozhodnutelnost struktury racionálních číselcs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2006
dcterms.dateAccepted2006-11-03
dc.description.departmentDepartment of Logicen_US
dc.description.departmentKatedra logikycs_CZ
dc.description.facultyFaculty of Artsen_US
dc.description.facultyFilozofická fakultacs_CZ
dc.identifier.repId27461
dc.title.translatedThe undecidability of the field of rationalsen_US
dc.contributor.refereeKrajíček, Jan
dc.identifier.aleph001681002
thesis.degree.namePhDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineLogicen_US
thesis.degree.disciplineLogikacs_CZ
thesis.degree.programLogicen_US
thesis.degree.programLogikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csFilozofická fakulta::Katedra logikycs_CZ
uk.taxonomy.organization-enFaculty of Arts::Department of Logicen_US
uk.faculty-name.csFilozofická fakultacs_CZ
uk.faculty-name.enFaculty of Artsen_US
uk.faculty-abbr.csFFcs_CZ
uk.degree-discipline.csLogikacs_CZ
uk.degree-discipline.enLogicen_US
uk.degree-program.csLogikacs_CZ
uk.degree-program.enLogicen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csOtázka rozhodnutelnosti, tj. otázka, zda existuje algoritmus, který by byl schopen rozhodnout o platnosti každé prvořádové predikátové formule, se dostala na výsluní pozornosti matematiků ve dvacátých letech minulého století. Spolu s ní byla zkoumána i rozhodnutelnost druhořádových formulí a obecně jakéhokoli matematického tvrzení. Souhrnně byly tyto otázky označovány jako Hilbertův Entscheidungsproblem a ještě roku 1930 Hilbert věřil v jejich kladné řešení. Roku 1936 však Alonzo Church ukázal, že samotná predikátová logika prvního řádu je nerozhodnutelná, a téhož roku pak Alan Turing představil dnes již klasický nerozhodnutelný problém, problém zastavení. Oba při tom ve svých pracech využili myšlenek, které formuloval Kurt Godel ve svém důkazu neúplnosti aritmetiky. V otázce rozhodnutelnosti základních aritmetických struktur přinesl první významný výsledek Mojzesz Presburger, který roku 1929 dokázal rozhodnutelnost přirozených čísel s operací sčítání a konstantami O a 1. Nicméně hned následujícího roku vyplynulo z Godelových výsledků, že tatáž struktura včetně operace násobení již rozhodnutelná být nemůže. Tím byla zároveň vyřešena i otázka rozhodnutelnosti čísel celých, neboť pojem přirozeného čísla je v této struktuře definovatelný (viz kapitolu 4.2), a tak je možno v celých číslech reformulovat každou...cs_CZ
uk.file-availabilityV
uk.grantorUniverzita Karlova, Filozofická fakulta, Katedra logikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990016810020106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV