Show simple item record

Utilizing artificial neural networks to accelerate evolutionary algorithms
dc.contributor.advisorHoleňa, Martin
dc.creatorWimberský, Antonín
dc.date.accessioned2017-05-08T14:02:06Z
dc.date.available2017-05-08T14:02:06Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/49639
dc.description.abstractV předkládané práci studujeme možnosti využití umělých neuronových sítí k urychlení evolučních algoritmů. Urychlení spočívá ve snížení počtu volání fitness funkce, jejíž vyhodnocení je u některých typů optimalizačních úloh značně časově i finančně náročné. Jako regresní model používáme neuronovou síť, která slouží pro odhadnutí hodnoty fitness jedinců v průběhu evolučního algoritmu. Zároveň s regresním modelem pracujeme i se skutečnou fitness funkcí, kterou používáme pro přehodnocení jedinců vybraných podle předem zvolené strategie. Tyto jedince ohodnocené skutečnou fitness funkcí pak využijeme pro zlepšení regresního modelu. Díky tomu, že je velká část jedinců ohodnocována pouze regresním modelem, se podstatně snižuje celkový počet volání skutečné fitness funkce, který je potřebný pro nalezení kvalitního řešení optimalizační úlohy.cs_CZ
dc.description.abstractIn the present work, we study possibilities of using artificial neural networks for accelerating of evolutionary algorithms. Improving consists in decreasing in number of calls to the fitness function, the evaluation of which is in some kinds of optimization problems very time- consuming and expensive. We use neural network as a regression model, which serves for fitness estimation in a run of evolutionary algorithm. Together with the regression model, we work also with the real fitness function, which we use for re-evaluation of individuals that are selecting according to a beforehand chosen strategy. These individuals re-evaluated by the real fitness function are used for improving the regression model. Because a significant number of individuals are evaluated only with the regression model, the number of calls to the real fitness function, that is needed for finding of a good solution of the optimization problem, is substantially reduced.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectoptimalizacecs_CZ
dc.subjectevoluční algoritmuscs_CZ
dc.subjectneuronová síťcs_CZ
dc.subjectnáhradní modelcs_CZ
dc.subjectregresecs_CZ
dc.subjectoptimizationen_US
dc.subjectevolutional algorithmen_US
dc.subjectneural networken_US
dc.subjectsurrogate modelen_US
dc.subjectregressionen_US
dc.titleVyužití umělých neuronových sítí k urychlení evolučních algoritmůcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-05
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId48648
dc.title.translatedUtilizing artificial neural networks to accelerate evolutionary algorithmsen_US
dc.contributor.refereeGemrot, Jakub
dc.identifier.aleph001384124
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineTheoretical Computer Scienceen_US
thesis.degree.disciplineTeoretická informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická informatikacs_CZ
uk.degree-discipline.enTheoretical Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV předkládané práci studujeme možnosti využití umělých neuronových sítí k urychlení evolučních algoritmů. Urychlení spočívá ve snížení počtu volání fitness funkce, jejíž vyhodnocení je u některých typů optimalizačních úloh značně časově i finančně náročné. Jako regresní model používáme neuronovou síť, která slouží pro odhadnutí hodnoty fitness jedinců v průběhu evolučního algoritmu. Zároveň s regresním modelem pracujeme i se skutečnou fitness funkcí, kterou používáme pro přehodnocení jedinců vybraných podle předem zvolené strategie. Tyto jedince ohodnocené skutečnou fitness funkcí pak využijeme pro zlepšení regresního modelu. Díky tomu, že je velká část jedinců ohodnocována pouze regresním modelem, se podstatně snižuje celkový počet volání skutečné fitness funkce, který je potřebný pro nalezení kvalitního řešení optimalizační úlohy.cs_CZ
uk.abstract.enIn the present work, we study possibilities of using artificial neural networks for accelerating of evolutionary algorithms. Improving consists in decreasing in number of calls to the fitness function, the evaluation of which is in some kinds of optimization problems very time- consuming and expensive. We use neural network as a regression model, which serves for fitness estimation in a run of evolutionary algorithm. Together with the regression model, we work also with the real fitness function, which we use for re-evaluation of individuals that are selecting according to a beforehand chosen strategy. These individuals re-evaluated by the real fitness function are used for improving the regression model. Because a significant number of individuals are evaluated only with the regression model, the number of calls to the real fitness function, that is needed for finding of a good solution of the optimization problem, is substantially reduced.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
dc.identifier.lisID990013841240106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV