dc.contributor.advisor | Pecina, Pavel | |
dc.creator | Kirschner, Martin | |
dc.date.accessioned | 2017-05-08T13:56:33Z | |
dc.date.available | 2017-05-08T13:56:33Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/49619 | |
dc.description.abstract | Předložená práce si dává za cíl prozkoumat možnosti automatické konstrukce a rozšiřování sémantických sítí za použití metod strojového učení. Důraz je kladen na postup získávání rysů pro sadu dat. Práce prezentuje metodu získávání sémantických relací, založenou na distribuční hypotéze a trénovanou na datech z Czech WordNetu. Dále jsou prezentovány zatím první výsledky pro český jazyk v této oblasti. Součástí práce je sada programů pro zpracování a vyhodnocení dat a přehled a diskuze jejich výsledků na konkrétních datech. Výsledným nástrojem je možné zpracovávat data řádově v rozsahu stovek miliónů slov. Práce byla vypracována na českých morfologicky a syntakticky anotovaných datech, nicméně použité postupy nejsou na jazyce závislé. | cs_CZ |
dc.description.abstract | Presented work explores the possibilities of automatic construction and expansion of semantic networks with use of machine learning methods. The main focus is put on the feature retrieving procedure for the data set. The work presents a method of semantic relation retrieval, based on distributional hypothesis and trained on the data from Czech WordNet. We also show the first results for Czech language in this area of research. Part of the thesis is also a set of software for processing and evaluating of input data and a overview and discussion about its results on real-world data. The resulting tools can process data of amount in orders of hundreds of millions of words. The research part of the thesis used Czech morphologically and syntactically annotated data, but the methods are not language dependent. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | sémantické sítě | cs_CZ |
dc.subject | automatické | cs_CZ |
dc.subject | vytváření | cs_CZ |
dc.subject | strojové učení | cs_CZ |
dc.subject | semantic networks | en_US |
dc.subject | automatic | en_US |
dc.subject | construction | en_US |
dc.subject | machine learning | en_US |
dc.title | Automatické vytváření sémantických sítí | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-01-30 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 79225 | |
dc.title.translated | Automatic construction of semantic networks | en_US |
dc.contributor.referee | Holub, Martin | |
dc.identifier.aleph | 001431088 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Computational Linguistics | en_US |
thesis.degree.discipline | Matematická lingvistika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická lingvistika | cs_CZ |
uk.degree-discipline.en | Computational Linguistics | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Předložená práce si dává za cíl prozkoumat možnosti automatické konstrukce a rozšiřování sémantických sítí za použití metod strojového učení. Důraz je kladen na postup získávání rysů pro sadu dat. Práce prezentuje metodu získávání sémantických relací, založenou na distribuční hypotéze a trénovanou na datech z Czech WordNetu. Dále jsou prezentovány zatím první výsledky pro český jazyk v této oblasti. Součástí práce je sada programů pro zpracování a vyhodnocení dat a přehled a diskuze jejich výsledků na konkrétních datech. Výsledným nástrojem je možné zpracovávat data řádově v rozsahu stovek miliónů slov. Práce byla vypracována na českých morfologicky a syntakticky anotovaných datech, nicméně použité postupy nejsou na jazyce závislé. | cs_CZ |
uk.abstract.en | Presented work explores the possibilities of automatic construction and expansion of semantic networks with use of machine learning methods. The main focus is put on the feature retrieving procedure for the data set. The work presents a method of semantic relation retrieval, based on distributional hypothesis and trained on the data from Czech WordNet. We also show the first results for Czech language in this area of research. Part of the thesis is also a set of software for processing and evaluating of input data and a overview and discussion about its results on real-world data. The resulting tools can process data of amount in orders of hundreds of millions of words. The research part of the thesis used Czech morphologically and syntactically annotated data, but the methods are not language dependent. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
dc.identifier.lisID | 990014310880106986 | |