Show simple item record

States on algebras
dc.creatorŠtěpánová, Martina
dc.date.accessioned2021-05-24T11:27:12Z
dc.date.available2021-05-24T11:27:12Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47750
dc.description.abstractStavy na algebrách Abstrakt: Stavy jsou speciálními případy zobrazení do množiny reálných čísel. V práci představíme stavy na uspořádaných abelovských grupách, MV-algebrách, GMV-algebrách a komutativních DRl-mo- noidech. Popíšeme některé vlastnosti zmíněných algeber a poukážeme na vztahy mezi nimi. Například GMV-algebry (algebraický protějšek nekomutativní nekonečně hodnotové logiky) jsou nekomutativním zobecněním MV-algeber (algebraická analogie k Łukasiewiczově nekonečně hod- notové logice) a MV-algebry jsou speciálním případem komutativních DRl-monoidů. Představeny jsou věty o existenci, resp. jednoznačnosti stavů a tvrzení o hodnotách, kterých stavy nabývají.cs_CZ
dc.description.abstractStates on algebras Abstract: States are defined as special cases of a mapping into a set of real numbers. In the thesis, we intro- duce states on ordered Abelian groups, many valued algebras (MV-algebras), generalized many valued algebras (GMV-algebras) and commutative dually residuated lattice ordered monoids (commutative DRl-monoids). We describe some properties of above-mentioned algebras and present a connection among them. For example, GMV-algebras (an algebraic counterpart of the non-commutative infinite valued propositional logic) are a non-commutative generalization of MV-algebras (an algebraic analogy of the Łukasiewicz infinite valued propositional logic) and we can obtain MV-algebras as special cases of DRl-monoids. Existence theorems for states, con- ditions for the uniqueness of states and formulas for the ranges of values of states are introduced here.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectstateen_US
dc.subjectordered Abelian groupen_US
dc.subjectMV-algebraen_US
dc.subjectGMV-algebraen_US
dc.subjectDRl-monoiden_US
dc.subjectstavcs_CZ
dc.subjectuspořádaná grupacs_CZ
dc.subjectMV-algebracs_CZ
dc.subjectGMV-algebracs_CZ
dc.subjectDRl-monoidcs_CZ
dc.titleStavy na algebráchcs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-11-03
dc.description.departmentKatedra didaktiky matematikycs_CZ
dc.description.departmentDepartment of Mathematics Educationen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId114957
dc.title.translatedStates on algebrasen_US
dc.identifier.aleph001398479
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineUčitelství matematiky - deskriptivní geometrie pro střední školycs_CZ
thesis.degree.disciplineTraining Teachers of Mathematics and Descriptive Geometry at Higher Secondary Schoolsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra didaktiky matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematics Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUčitelství matematiky - deskriptivní geometrie pro střední školycs_CZ
uk.degree-discipline.enTraining Teachers of Mathematics and Descriptive Geometry at Higher Secondary Schoolsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csStavy na algebrách Abstrakt: Stavy jsou speciálními případy zobrazení do množiny reálných čísel. V práci představíme stavy na uspořádaných abelovských grupách, MV-algebrách, GMV-algebrách a komutativních DRl-mo- noidech. Popíšeme některé vlastnosti zmíněných algeber a poukážeme na vztahy mezi nimi. Například GMV-algebry (algebraický protějšek nekomutativní nekonečně hodnotové logiky) jsou nekomutativním zobecněním MV-algeber (algebraická analogie k Łukasiewiczově nekonečně hod- notové logice) a MV-algebry jsou speciálním případem komutativních DRl-monoidů. Představeny jsou věty o existenci, resp. jednoznačnosti stavů a tvrzení o hodnotách, kterých stavy nabývají.cs_CZ
uk.abstract.enStates on algebras Abstract: States are defined as special cases of a mapping into a set of real numbers. In the thesis, we intro- duce states on ordered Abelian groups, many valued algebras (MV-algebras), generalized many valued algebras (GMV-algebras) and commutative dually residuated lattice ordered monoids (commutative DRl-monoids). We describe some properties of above-mentioned algebras and present a connection among them. For example, GMV-algebras (an algebraic counterpart of the non-commutative infinite valued propositional logic) are a non-commutative generalization of MV-algebras (an algebraic analogy of the Łukasiewicz infinite valued propositional logic) and we can obtain MV-algebras as special cases of DRl-monoids. Existence theorems for states, con- ditions for the uniqueness of states and formulas for the ranges of values of states are introduced here.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra didaktiky matematikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV