Show simple item record

Odhadování value-at-risk s využitím ARMA-GARCH modelů během poslední finanční krize
dc.contributor.advisorRippel, Milan
dc.creatorJánský, Ivo
dc.date.accessioned2020-02-14T12:58:24Z
dc.date.available2020-02-14T12:58:24Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47717
dc.description.abstractThe thesis evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the AR and MA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the thesis is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. Unlike other works in this field of study, the thesis does not assume the log-returns to be normally distributed and does not explicitly select a particular conditional volatility process. Moreover, the thesis takes advantage of a less known conditional coverage framework for the measurement of forecasting accuracy.en_US
dc.description.abstractTato práce vyhodnocuje několik set modelů pro jednodenní předpověď VaR v období mezi roky 2004 až 2009 na datech ze šesti světových akciových indexů - DJI, GSPC, IXIC, FTSE, GDAXI a N225. Modely jsou založené na AR a MA procesech s maximálně dvěma předešlými pozorováními a zároveň modelují podmíněnou volatilitu pomocí jednoho z GARCH, EGARCH a TARCH procesů rovněž s maximálně dvěma předešlými pozorováními. Parametry modelů jsou odhadnuty na datech z prvního období a jejich odhadovací přesnost je otestována na datech z druhého období, které vykazuje podstatně větší volatilitu. Hlavním cílem práce je otestovat, zda modely s parametry odhadnutými v období menší volatility mohou být použity i v období s větší volatilitou. Vyhodnocení je založeno na conditional coverage testu a je provedeno pro každý index zvlášť. Na rozdíl od jiných prací zabývajících se tímto tématem, tato práce nepředpokládá normální rozdělení logaritmovaných výnosů a neomezuje se na jeden předem vybraný proces pro modelování podmíněně volatility. Tato práce navíc využívá měně známý aparát, tzv. conditional coverage, pro vyhodnocení přesnosti odhadu modelů, který oproti standardním metodám nabízí několik výhod.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectVaRen_US
dc.subjectrisk analysisen_US
dc.subjectfinancial crisisen_US
dc.subjectconditional volatilityen_US
dc.subjectconditional coverageen_US
dc.subjectstock indexen_US
dc.subjectgarchen_US
dc.subjectegarchen_US
dc.subjecttarchen_US
dc.subjectmoving average processen_US
dc.subjectautoregressive processen_US
dc.subjectVaRcs_CZ
dc.subjectanalýza rizikacs_CZ
dc.subjectfinanční krizecs_CZ
dc.subjectpodmíněná volatilitacs_CZ
dc.subjectconditional coveragecs_CZ
dc.subjectodhad modelůcs_CZ
dc.subjectakciový indexcs_CZ
dc.subjectgarchcs_CZ
dc.subjectegarchcs_CZ
dc.subjecttarchcs_CZ
dc.subjectmoving average procescs_CZ
dc.subjectautoregresivní procescs_CZ
dc.titleValue-at-risk forecasting with the ARMA-GARCH family of models during the recent financial crisisen_US
dc.typerigorózní prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-10-19
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId113430
dc.title.translatedOdhadování value-at-risk s využitím ARMA-GARCH modelů během poslední finanční krizecs_CZ
dc.contributor.refereeSeidler, Jakub
dc.identifier.aleph001395208
thesis.degree.namePhDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
thesis.degree.programEconomicsen_US
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csTato práce vyhodnocuje několik set modelů pro jednodenní předpověď VaR v období mezi roky 2004 až 2009 na datech ze šesti světových akciových indexů - DJI, GSPC, IXIC, FTSE, GDAXI a N225. Modely jsou založené na AR a MA procesech s maximálně dvěma předešlými pozorováními a zároveň modelují podmíněnou volatilitu pomocí jednoho z GARCH, EGARCH a TARCH procesů rovněž s maximálně dvěma předešlými pozorováními. Parametry modelů jsou odhadnuty na datech z prvního období a jejich odhadovací přesnost je otestována na datech z druhého období, které vykazuje podstatně větší volatilitu. Hlavním cílem práce je otestovat, zda modely s parametry odhadnutými v období menší volatility mohou být použity i v období s větší volatilitou. Vyhodnocení je založeno na conditional coverage testu a je provedeno pro každý index zvlášť. Na rozdíl od jiných prací zabývajících se tímto tématem, tato práce nepředpokládá normální rozdělení logaritmovaných výnosů a neomezuje se na jeden předem vybraný proces pro modelování podmíněně volatility. Tato práce navíc využívá měně známý aparát, tzv. conditional coverage, pro vyhodnocení přesnosti odhadu modelů, který oproti standardním metodám nabízí několik výhod.cs_CZ
uk.abstract.enThe thesis evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the AR and MA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the thesis is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. Unlike other works in this field of study, the thesis does not assume the log-returns to be normally distributed and does not explicitly select a particular conditional volatility process. Moreover, the thesis takes advantage of a less known conditional coverage framework for the measurement of forecasting accuracy.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV