Show simple item record

Differentiability of the inverse mapping
dc.contributor.advisorHencl, Stanislav
dc.creatorKonopecký, František
dc.date.accessioned2017-05-08T05:00:15Z
dc.date.available2017-05-08T05:00:15Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47697
dc.description.abstractV práci dokazujeme výsledek, že pokud pro ∈ ℕ a ≥ 1 bilipschitzovské zobrazení náleží do +1, loc ∩ ,∞ loc , tak náleží do +1, loc i jeho inverze −1 . Obdobné tvrzení dokazujeme i pro prostory loc. K tomuto účelu je v práci vybudováno nové uspořádání -tých parciálních derivací do zobecněné Jakobiho matice, díky níž můžeme vhodně deri- vovat matice. Zobecněná Jakobiho matice je navržena tak, aby bylo zachováno řetízkové pravidlo a bylo možné derivovat i součin matic. 1cs_CZ
dc.description.abstractPrimary objective of the thesis is proof of the statement that if for ∈ ℕ a ≥ 1 a bilipschitz mapping belongs to +1, loc ∩ ,∞ loc then also its inverse −1 belongs to +1, loc . We prove a similar statement also for spaces loc . For this purpose we construct a new ordering of -th partial derivatives to generalized Jacobian matrix. Thanks to this matrix we are able to differentiate matrices in an applicable way. Generalized Jacobian matrix is projected so that there still holds the Chain rule and, in some way, also rules for matrices product differentiation. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectSobolevovy prostorycs_CZ
dc.subjectprostory BVcs_CZ
dc.subjectbilipschitzovské zobrazenícs_CZ
dc.subjectSobolev spacesen_US
dc.subjectspaces of bounded variationen_US
dc.subjectbilipschitz mappingen_US
dc.titleDiferencovatelnost inverzního zobrazenícs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-11-24
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId113156
dc.title.translatedDifferentiability of the inverse mappingen_US
dc.identifier.aleph001402784
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspělcs_CZ
thesis.grade.enPassen_US
uk.abstract.csV práci dokazujeme výsledek, že pokud pro ∈ ℕ a ≥ 1 bilipschitzovské zobrazení náleží do +1, loc ∩ ,∞ loc , tak náleží do +1, loc i jeho inverze −1 . Obdobné tvrzení dokazujeme i pro prostory loc. K tomuto účelu je v práci vybudováno nové uspořádání -tých parciálních derivací do zobecněné Jakobiho matice, díky níž můžeme vhodně deri- vovat matice. Zobecněná Jakobiho matice je navržena tak, aby bylo zachováno řetízkové pravidlo a bylo možné derivovat i součin matic. 1cs_CZ
uk.abstract.enPrimary objective of the thesis is proof of the statement that if for ∈ ℕ a ≥ 1 a bilipschitz mapping belongs to +1, loc ∩ ,∞ loc then also its inverse −1 belongs to +1, loc . We prove a similar statement also for spaces loc . For this purpose we construct a new ordering of -th partial derivatives to generalized Jacobian matrix. Thanks to this matrix we are able to differentiate matrices in an applicable way. Generalized Jacobian matrix is projected so that there still holds the Chain rule and, in some way, also rules for matrices product differentiation. 1en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV