Show simple item record

Flexibilnost, robustnost a nespojitost v neparamerických regresních postupech
dc.contributor.advisorHušková, Marie
dc.creatorMaciak, Matúš
dc.date.accessioned2021-05-24T11:38:46Z
dc.date.available2021-05-24T11:38:46Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47369
dc.description.abstractNázov práce: Flexibilnost, Robustnost a Nespojitost v Neparametrických Regresních Postupech Autor: Mgr. Matúš Maciak, M.Sc. Pracoviště: Katedra Pravděpodobnosti a Matematické Statistiky, Univerzita Karlova v Praze Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstrakt: V tejto práci sa zameriame na lokálne polynomiálne vyhadovanie neznámej regresnej funkcie, pričom zároveň sa budeme snažiť zapracovať do odhadovacích postupov určitú mieru robustnosti a to špeciálne vzhľadom k odľahlým pozorovaniam a tiež rozdeleniam náhodných chýb, ktoré sa vyznačujú ťažkými chvostami. Zamierame našu pozornosť na tzv. lokálne polynomiálne M-vyhladovače (M-smoothers) a odvodíme ich základné štatistické vlastnosti. Ďalšia zásadná vlastnosť s ktorou budeme pracovať, je nespojitosť, prípadne nehladkosť (teda nespojitosť derivácii) neznámej regresnej funkcie. Zaoberať sa budeme niektorými druhmi modelov, špeciálne modelom s homoskedastickou a heteroskedastickou štruktúrou variability a to pre prípad nezávislých, ako aj závislých pozorovaní. Nespojitosti v modeli budeme riešiť prostredníctvom štatistických testov, pre ktoré navrhneme konkrétne postupy a budeme tiež vyšetrovať ich základné štatistické vlastnosti. Vzhľadom k faktu, že asymptotické rozdelenie testových štatistík, rovnako ako aj odhadov...cs_CZ
dc.description.abstractThesis title: Flexibility, Robustness and Discontinuity in Nonparametric Regression Approaches Author: Mgr. Matúš Maciak, M.Sc. Department: Department of Probability and Mathematical Statistics, Charles University in Prague Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstract: In this thesis we focus on local polynomial estimation approaches of an unknown regression function while taking into account also some robust issues like a presence of outlying observa- tions or heavy-tailed distributions of random errors as well. We will discuss the most common method used for such settings, so called local polynomial M-smoothers and we will present the main statistical properties and asymptotic inference for this method. The M-smoothers method is especially suitable for such cases because of its natural robust flavour, which can nicely deal with outliers as well as heavy-tailed distributed random errors. Another important quality we will focus in this thesis on is a discontinuity issue where we allow for sudden changes (discontinuity points) in the unknown regression function or its derivatives respectively. We will propose a discontinuity model with different variability structures for both independent and dependent random errors while the discontinuity points will be treated in a...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleFlexibility, Robustness and Discontinuities in Nonparametric Regression Approachesen_US
dc.typerigorózní prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-11-08
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId116708
dc.title.translatedFlexibilnost, robustnost a nespojitost v neparamerických regresních postupechcs_CZ
dc.identifier.aleph001399384
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csNázov práce: Flexibilnost, Robustnost a Nespojitost v Neparametrických Regresních Postupech Autor: Mgr. Matúš Maciak, M.Sc. Pracoviště: Katedra Pravděpodobnosti a Matematické Statistiky, Univerzita Karlova v Praze Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstrakt: V tejto práci sa zameriame na lokálne polynomiálne vyhadovanie neznámej regresnej funkcie, pričom zároveň sa budeme snažiť zapracovať do odhadovacích postupov určitú mieru robustnosti a to špeciálne vzhľadom k odľahlým pozorovaniam a tiež rozdeleniam náhodných chýb, ktoré sa vyznačujú ťažkými chvostami. Zamierame našu pozornosť na tzv. lokálne polynomiálne M-vyhladovače (M-smoothers) a odvodíme ich základné štatistické vlastnosti. Ďalšia zásadná vlastnosť s ktorou budeme pracovať, je nespojitosť, prípadne nehladkosť (teda nespojitosť derivácii) neznámej regresnej funkcie. Zaoberať sa budeme niektorými druhmi modelov, špeciálne modelom s homoskedastickou a heteroskedastickou štruktúrou variability a to pre prípad nezávislých, ako aj závislých pozorovaní. Nespojitosti v modeli budeme riešiť prostredníctvom štatistických testov, pre ktoré navrhneme konkrétne postupy a budeme tiež vyšetrovať ich základné štatistické vlastnosti. Vzhľadom k faktu, že asymptotické rozdelenie testových štatistík, rovnako ako aj odhadov...cs_CZ
uk.abstract.enThesis title: Flexibility, Robustness and Discontinuity in Nonparametric Regression Approaches Author: Mgr. Matúš Maciak, M.Sc. Department: Department of Probability and Mathematical Statistics, Charles University in Prague Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstract: In this thesis we focus on local polynomial estimation approaches of an unknown regression function while taking into account also some robust issues like a presence of outlying observa- tions or heavy-tailed distributions of random errors as well. We will discuss the most common method used for such settings, so called local polynomial M-smoothers and we will present the main statistical properties and asymptotic inference for this method. The M-smoothers method is especially suitable for such cases because of its natural robust flavour, which can nicely deal with outliers as well as heavy-tailed distributed random errors. Another important quality we will focus in this thesis on is a discontinuity issue where we allow for sudden changes (discontinuity points) in the unknown regression function or its derivatives respectively. We will propose a discontinuity model with different variability structures for both independent and dependent random errors while the discontinuity points will be treated in a...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV