Show simple item record

Topologická a geometrická kombinatorika
dc.contributor.advisorMatoušek, Jiří
dc.creatorTancer, Martin
dc.date.accessioned2018-11-30T13:50:50Z
dc.date.available2018-11-30T13:50:50Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/47244
dc.description.abstract1 Topological and Geometrical Combinatorics Martin Tancer Abstract The task of the thesis is to present several new results on topological methods in combinatorics. The results can be split into two main streams. The first stream regards intersection patterns of convex sets. It is shown in the thesis that finite projective planes cannot be intersection patterns of convex sets of fixed dimension which answers a question of Alon, Kalai, Matoušek and Meshulam. Another result shows that d-collapsibility (a necessary condition on properties of in- tersection patterns of convex sets in dimension d) is NP-complete for recognition if d ≥ 4. In addition it is shown that d-collapsibility is not a necessary condition on properties of intersection patterns of good covers, which disproves a conjecture of G. Wegner from 1975. The second stream considers algorithmic hardness of recognition of simplicial com- plexes embeddable into Rd . The following results are proved: It is algorithmically un- decidable whether a k-dimensional simplicial complex piecewise-linearly embeds into Rd for d ≥ 5 and k ∈ {d−1, d}; and this problem is NP-hard if d ≥ 4 and d ≥ k ≥ 2d−2 3 .en_US
dc.description.abstract1 Topological and Geometrical Combinatorics Martin Tancer Český abstrakt práce Cílem práce je prezentovat několik nových výsledků v oblasti topologických metod v kombinatorice. Výsledky lze zařadit do dvou hlavních oblastí. První oblast pokrývá průsečíkové struktury konvexních množin. V práci je ukázáno, že konečné projektivní roviny nemůžou být průsečíkovými strukturami konvexních množin pevné dimenze, což odpovídá na otázku Alona, Kalaie, Matouška a Meshu- lama. Dále je ukázáno, že d-kolabovatelnost (nutná podmínka na vlastnosti průsečíkových struktur konvexních množin v dimenzi d) je NP-těžká k rozpoznání pro d ≥ 4. A také je ukázáno, že d-kolabovatelnost není nutnou podmínkou na vlastnosti průsečíkových vzorů dobrých pokrytí, což vyvrací domněnku G. Wegnera z roku 1975. Do druhé oblasti spadá několik výsledků ohledně algoritmické obtížnosti rozpoz- návání simpliciálních komplexů vnořitelných do Rd . Konkrétněji, je algortmicky ne- rozhodnutelné, zda lze k-rozměrný simpliciální komplex po částech lineárně vnořit do Rd , pokud d ≥ 5 a k ∈ {d − 1, d}. Dále je tento problém NP-těžký, pokud d ≥ 4 a d ≥ k ≥ 2d−2 3 .cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectSimplicial complexen_US
dc.subjecttopological method in combinatoricsen_US
dc.subjectd-representabilityen_US
dc.subjectd-collapsibilityen_US
dc.subjectembeddabilityen_US
dc.subjectSimpliciální komplexcs_CZ
dc.subjecttopologická metoda v kombinatoricecs_CZ
dc.subjectd-reprezentovatelnostcs_CZ
dc.subjectd-kolabovatelnostcs_CZ
dc.subjectvnořitelnostcs_CZ
dc.titleTopological and geometrical combinatoricsen_US
dc.typedizertační prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-19
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId44561
dc.title.translatedTopologická a geometrická kombinatorikacs_CZ
dc.contributor.refereePultr, Aleš
dc.contributor.refereeKaiser, Tomáš
dc.contributor.refereeMeshulam, Roy
dc.identifier.aleph001387629
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineDiskrétní modely a algoritmycs_CZ
thesis.degree.disciplineDiscrete Models and Algorithmsen_US
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní modely a algoritmycs_CZ
uk.degree-discipline.enDiscrete Models and Algorithmsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.cs1 Topological and Geometrical Combinatorics Martin Tancer Český abstrakt práce Cílem práce je prezentovat několik nových výsledků v oblasti topologických metod v kombinatorice. Výsledky lze zařadit do dvou hlavních oblastí. První oblast pokrývá průsečíkové struktury konvexních množin. V práci je ukázáno, že konečné projektivní roviny nemůžou být průsečíkovými strukturami konvexních množin pevné dimenze, což odpovídá na otázku Alona, Kalaie, Matouška a Meshu- lama. Dále je ukázáno, že d-kolabovatelnost (nutná podmínka na vlastnosti průsečíkových struktur konvexních množin v dimenzi d) je NP-těžká k rozpoznání pro d ≥ 4. A také je ukázáno, že d-kolabovatelnost není nutnou podmínkou na vlastnosti průsečíkových vzorů dobrých pokrytí, což vyvrací domněnku G. Wegnera z roku 1975. Do druhé oblasti spadá několik výsledků ohledně algoritmické obtížnosti rozpoz- návání simpliciálních komplexů vnořitelných do Rd . Konkrétněji, je algortmicky ne- rozhodnutelné, zda lze k-rozměrný simpliciální komplex po částech lineárně vnořit do Rd , pokud d ≥ 5 a k ∈ {d − 1, d}. Dále je tento problém NP-těžký, pokud d ≥ 4 a d ≥ k ≥ 2d−2 3 .cs_CZ
uk.abstract.en1 Topological and Geometrical Combinatorics Martin Tancer Abstract The task of the thesis is to present several new results on topological methods in combinatorics. The results can be split into two main streams. The first stream regards intersection patterns of convex sets. It is shown in the thesis that finite projective planes cannot be intersection patterns of convex sets of fixed dimension which answers a question of Alon, Kalai, Matoušek and Meshulam. Another result shows that d-collapsibility (a necessary condition on properties of in- tersection patterns of convex sets in dimension d) is NP-complete for recognition if d ≥ 4. In addition it is shown that d-collapsibility is not a necessary condition on properties of intersection patterns of good covers, which disproves a conjecture of G. Wegner from 1975. The second stream considers algorithmic hardness of recognition of simplicial com- plexes embeddable into Rd . The following results are proved: It is algorithmically un- decidable whether a k-dimensional simplicial complex piecewise-linearly embeds into Rd for d ≥ 5 and k ∈ {d−1, d}; and this problem is NP-hard if d ≥ 4 and d ≥ k ≥ 2d−2 3 .en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV