Zobrazit minimální záznam

Ergodic Theory
Ergodická teorie
dc.contributor.advisorHlubinka, Daniel
dc.creatorLisko, Adrian
dc.date.accessioned2017-05-07T19:39:55Z
dc.date.available2017-05-07T19:39:55Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/45979
dc.description.abstractBakalářská práce kompiluje základní poznatky z ergodické teorie. Motivací k napsání této práce bylo seznámit se se zajímavou okrajovou látkou a procvičit si již probranou látku s ní spojenou. Práce začíná zadefinováním transformací zachovávajícich míru a přechází od vlasnosti rekurence a Poincarrého věty k ergodicite a Birkhoffově ergodické věte a k mixovaní. Nakonec je ukázána spojitost Birkhoffovy ergodické věty s Kolmogorovovým silným zákonem velkých čísel. Teoretické poznatky jou přiblíženy na příkladech základních transformácí vyskytujícich se v ergodické teorii.cs_CZ
dc.description.abstractThis Bachelor Thesis compiles basics of ergodic theory. Motivation for writing this text was interesting topic and linkeage between it and the mathematics already learned. The Thesis begins with defining measure-preserving transformations and continues with recurrence and Poincarré's recurrence theorem to ergodicity and Birkhoff's ergodic theorem and mixing. In the end, it is shown that Birkhoff's ergodic theorem generalizes Kolmogorov's strong law of large numbers for stationary random sequences. Theory is demonstrated on a handful of examples of basic transformations.en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectzachovávajúci mierucs_CZ
dc.subjectergodickýcs_CZ
dc.subjectrekurenciacs_CZ
dc.subjectpravdepodobnos»cs_CZ
dc.subjectmixovaniecs_CZ
dc.subjectmeasure-preservingen_US
dc.subjectergodicen_US
dc.subjectrecurrenceen_US
dc.subjectprobabilityen_US
dc.subjectmixingen_US
dc.titleErgodická teoriesk_SK
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-03
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId91639
dc.title.translatedErgodic Theoryen_US
dc.title.translatedErgodická teoriecs_CZ
dc.contributor.refereeŠtěpán, Josef
dc.identifier.aleph001498318
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csBakalářská práce kompiluje základní poznatky z ergodické teorie. Motivací k napsání této práce bylo seznámit se se zajímavou okrajovou látkou a procvičit si již probranou látku s ní spojenou. Práce začíná zadefinováním transformací zachovávajícich míru a přechází od vlasnosti rekurence a Poincarrého věty k ergodicite a Birkhoffově ergodické věte a k mixovaní. Nakonec je ukázána spojitost Birkhoffovy ergodické věty s Kolmogorovovým silným zákonem velkých čísel. Teoretické poznatky jou přiblíženy na příkladech základních transformácí vyskytujícich se v ergodické teorii.cs_CZ
uk.abstract.enThis Bachelor Thesis compiles basics of ergodic theory. Motivation for writing this text was interesting topic and linkeage between it and the mathematics already learned. The Thesis begins with defining measure-preserving transformations and continues with recurrence and Poincarré's recurrence theorem to ergodicity and Birkhoff's ergodic theorem and mixing. In the end, it is shown that Birkhoff's ergodic theorem generalizes Kolmogorov's strong law of large numbers for stationary random sequences. Theory is demonstrated on a handful of examples of basic transformations.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014983180106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV