Show simple item record

Předpovídání realizované volatility: Záleží na skocích v cenách?
dc.contributor.advisorBaruník, Jozef
dc.creatorLipták, Štefan
dc.date.accessioned2017-05-07T00:42:31Z
dc.date.available2017-05-07T00:42:31Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/41391
dc.description.abstractTáto práca aplikuje heterogénny autoregresný model realizovanej volatility na pät'-minútové dáta troch spomedzi najlikvidnejších finančných aktív - S&P 500 Futures index, Euro FX a ropa. Hlavný prínos tejto práce spočíva v analyzovaní mimoriadneho množstva dát, ked'že pochádzajú z neobyčajne dlhého obdobia až 25 rokov, v prípade Euro FX je to 13 rokov. Jedným z ciel'ov je ukázat', že rozklad realizovanej variancie na spojitú a skokovú čast' má pozitívny vplyv na jej predpovedatel'nost' aj na vysokofrekvenčných dátach pokrývajúcich vel'mi dlhé obdobia. Hlavným ciel'om práce je skúmat' dynamiku parametrov HAR modelu v čase, a taktiež povahu volatility u rôznych druhov finančných aktív. Výsledky analýzy na dátach všetkých troch aktív potvrdzujú, že rozklad realizovanej variancie prispieva k vylepšeniu odhadov. Ukázalo sa však, že predpovedacia schopnost' modelu je najlepšia v prípade, že parametre boli odhadnuté na krátkych obdobiach (1-2 roky), čo je spôsobené pravdepodobne vysokou dynamikou parametrov v čase. Táto nestabilita parametrov bola odhalená aj s pomocou odhadov za jenotlivé roky, a to u všetkých súborov. Z toho vyplýva zaujímavé zistenie, a to že HAR model nie je vhodný na predpovedanie realizovanej volatility...cs_CZ
dc.description.abstractThis thesis uses Heterogeneous Autoregressive models of Realized Volatility on five-minute data of three of the most liquid financial assets - S&P 500 Futures index, Euro FX and Light Crude NYMEX. The main contribution lies in the length of the datasets which span the time period of 25 years (13 years in case of Euro FX). Our aim is to show that decomposing realized variance into continuous and jump components improves the predicatability of RV also on extremely long high frequency datasets. The main goal is to investigate the dynamics of the HAR model parameters in time. Also, we examine if volatilities of various assets behave differently. The results reveal that decomposing RV into its components indeed im- proves the modeling and forecasting of volatility on all datasets. However, we found that forecasts are best when based on short, 1-2 years, pre-forecast periods due to high dynamics of HAR model's parameters in time. This dynamics is revealed also by a year-by-year estimation on all datasets. Con- sequently, we consider HAR models to be inapproppriate for modeling RV on such long datasets as they are not able to capture the dynamics of RV. This was indicated on all three datasets, thus, we conclude that volatility behaves similarly for different types of assets with similar liquidity. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectkvadratická variáciacs_CZ
dc.subjectrealizovaná volatilitacs_CZ
dc.subjectrealizovaná varianciacs_CZ
dc.subjectvysokofrekvenčné dátacs_CZ
dc.subjectheterogénny autoregresný modelcs_CZ
dc.subjectquadratic variationen_US
dc.subjectrealized volatilityen_US
dc.subjectrealized varianceen_US
dc.subjecthigh frequency dataen_US
dc.subjectheterogeneous autoregressive modelen_US
dc.titleForecasting realized volatility: Do jumps in prices matter?en_US
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-13
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId110764
dc.title.translatedPředpovídání realizované volatility: Záleží na skocích v cenách?cs_CZ
dc.contributor.refereeŠopov, Boril
dc.identifier.aleph001501363
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEconomicsen_US
thesis.degree.disciplineEkonomiecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomiecs_CZ
uk.degree-discipline.enEconomicsen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTáto práca aplikuje heterogénny autoregresný model realizovanej volatility na pät'-minútové dáta troch spomedzi najlikvidnejších finančných aktív - S&P 500 Futures index, Euro FX a ropa. Hlavný prínos tejto práce spočíva v analyzovaní mimoriadneho množstva dát, ked'že pochádzajú z neobyčajne dlhého obdobia až 25 rokov, v prípade Euro FX je to 13 rokov. Jedným z ciel'ov je ukázat', že rozklad realizovanej variancie na spojitú a skokovú čast' má pozitívny vplyv na jej predpovedatel'nost' aj na vysokofrekvenčných dátach pokrývajúcich vel'mi dlhé obdobia. Hlavným ciel'om práce je skúmat' dynamiku parametrov HAR modelu v čase, a taktiež povahu volatility u rôznych druhov finančných aktív. Výsledky analýzy na dátach všetkých troch aktív potvrdzujú, že rozklad realizovanej variancie prispieva k vylepšeniu odhadov. Ukázalo sa však, že predpovedacia schopnost' modelu je najlepšia v prípade, že parametre boli odhadnuté na krátkych obdobiach (1-2 roky), čo je spôsobené pravdepodobne vysokou dynamikou parametrov v čase. Táto nestabilita parametrov bola odhalená aj s pomocou odhadov za jenotlivé roky, a to u všetkých súborov. Z toho vyplýva zaujímavé zistenie, a to že HAR model nie je vhodný na predpovedanie realizovanej volatility...cs_CZ
uk.abstract.enThis thesis uses Heterogeneous Autoregressive models of Realized Volatility on five-minute data of three of the most liquid financial assets - S&P 500 Futures index, Euro FX and Light Crude NYMEX. The main contribution lies in the length of the datasets which span the time period of 25 years (13 years in case of Euro FX). Our aim is to show that decomposing realized variance into continuous and jump components improves the predicatability of RV also on extremely long high frequency datasets. The main goal is to investigate the dynamics of the HAR model parameters in time. Also, we examine if volatilities of various assets behave differently. The results reveal that decomposing RV into its components indeed im- proves the modeling and forecasting of volatility on all datasets. However, we found that forecasts are best when based on short, 1-2 years, pre-forecast periods due to high dynamics of HAR model's parameters in time. This dynamics is revealed also by a year-by-year estimation on all datasets. Con- sequently, we consider HAR models to be inapproppriate for modeling RV on such long datasets as they are not able to capture the dynamics of RV. This was indicated on all three datasets, thus, we conclude that volatility behaves similarly for different types of assets with similar liquidity. 1en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV