Show simple item record

Přibližný polynomiální největší společný dělitel
dc.contributor.advisorZítko, Jan
dc.creatorEliaš, Ján
dc.date.accessioned2017-05-06T22:16:19Z
dc.date.available2017-05-06T22:16:19Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40859
dc.description.abstractNázev práce: Approximate Polynomial Greatest Common Divisor Autor: Ján Eliaš Katedra: Katedra numerické matematiky, MFF UK Vedoucí diplomové práce: Doc. RNDr. Jan Zítko, CSc., Katedra numerické matematiky, MFF UK Abstrakt: Výpočet najväčšieho spoločného delitel'a (GCD) dvoch polynómov patrí medzi základné problémy numerickej matematiky. Euklidov algoritmus je najstaršia a bežne používaná metóda na výpočet GCD, avšak táto metóda je značne nestabilná. Výpočet GCD je navyše zle postavená úloha v tom zmysle, že l'ubovol'ný šum pridaný ku koeficientom polynómov redukuje netriviálny GCD na konštantu. Jednu skupinu nových metód predstavujú metódy založené na odhade numerickej hod- nosti matíc. Operácie s polynómami sa tak redukujú na maticové počty. Ich nevýhodou je, že ani numerická hodnost' nemusí byt' spočítaná presne a hodnoverne kvôli citlivosti singulárnych čísel na šume. Ciel'om práce je prekonat' citlivost' výpočtu GCD na šume. Klíčová slova: AGCD, Sylvesterova matica, numerická hodnost', TLScs_CZ
dc.description.abstractTitle: Approximate Polynomial Greatest Common Divisor Author: Ján Eliaš Department: Department of Numerical Mathematics, MFF UK Supervisor: Doc. RNDr. Jan Zítko, CSc., Department of Numerical Mathematics, MFF UK Abstract: The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications. The Euclidean algorithm is the oldest and usual technique for computing GCD. However, the GCD computation problem is ill-posed, particularly when some unknown noise is applied to the polyno- mial coefficients. Since the Euclidean algorithm is unstable, new methods have been extensively studied in recent years. Methods based on the numerical rank estimation represent one group of current meth- ods. Their disadvantage is that the numerical rank cannot be computed reliably due to the sensitivity of singular values on noise. The aim of the work is to overcome the ill-posed sensitivity of GCD computation in the presence of noise. Keywords: AGCD, Sylvester matrix, numerical rank, TLSen_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectAGCDcs_CZ
dc.subjectSylvesterova maticacs_CZ
dc.subjectnumerická hodnosťcs_CZ
dc.subjectTLScs_CZ
dc.subjectAGCDen_US
dc.subjectSylvester matrixen_US
dc.subjectnumerical ranken_US
dc.subjectTLSen_US
dc.titleApproximate Polynomial Greatest Common Divisoren_US
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-17
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId95331
dc.title.translatedPřibližný polynomiální největší společný dělitelcs_CZ
dc.contributor.refereeHnětynková, Iveta
dc.identifier.aleph001503488
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Approximate Polynomial Greatest Common Divisor Autor: Ján Eliaš Katedra: Katedra numerické matematiky, MFF UK Vedoucí diplomové práce: Doc. RNDr. Jan Zítko, CSc., Katedra numerické matematiky, MFF UK Abstrakt: Výpočet najväčšieho spoločného delitel'a (GCD) dvoch polynómov patrí medzi základné problémy numerickej matematiky. Euklidov algoritmus je najstaršia a bežne používaná metóda na výpočet GCD, avšak táto metóda je značne nestabilná. Výpočet GCD je navyše zle postavená úloha v tom zmysle, že l'ubovol'ný šum pridaný ku koeficientom polynómov redukuje netriviálny GCD na konštantu. Jednu skupinu nových metód predstavujú metódy založené na odhade numerickej hod- nosti matíc. Operácie s polynómami sa tak redukujú na maticové počty. Ich nevýhodou je, že ani numerická hodnost' nemusí byt' spočítaná presne a hodnoverne kvôli citlivosti singulárnych čísel na šume. Ciel'om práce je prekonat' citlivost' výpočtu GCD na šume. Klíčová slova: AGCD, Sylvesterova matica, numerická hodnost', TLScs_CZ
uk.abstract.enTitle: Approximate Polynomial Greatest Common Divisor Author: Ján Eliaš Department: Department of Numerical Mathematics, MFF UK Supervisor: Doc. RNDr. Jan Zítko, CSc., Department of Numerical Mathematics, MFF UK Abstract: The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications. The Euclidean algorithm is the oldest and usual technique for computing GCD. However, the GCD computation problem is ill-posed, particularly when some unknown noise is applied to the polyno- mial coefficients. Since the Euclidean algorithm is unstable, new methods have been extensively studied in recent years. Methods based on the numerical rank estimation represent one group of current meth- ods. Their disadvantage is that the numerical rank cannot be computed reliably due to the sensitivity of singular values on noise. The aim of the work is to overcome the ill-posed sensitivity of GCD computation in the presence of noise. Keywords: AGCD, Sylvester matrix, numerical rank, TLSen_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV