Show simple item record

Lineární kódy nad okruhy
dc.contributor.advisorŠťovíček, Jan
dc.creatorKobrle, Tomáš
dc.date.accessioned2017-05-06T21:51:10Z
dc.date.available2017-05-06T21:51:10Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40783
dc.description.abstractTato diplomová práce se zaměřuje na speciální typ okruhů nazývaný algebry cest s cílem definovat a popsat lineární kódy nad těmito okruhy. Algebra cest je definována pomocí grafické struktury tak zvaných quiverů, jejich struktura se pak dále přenáší i na moduly algeber cest. Samotné kódy jsou definovány nad nerozložitelnými injektivními moduly algeber cest s ohledem na nedávné výsledky z teorie kódů nad okruhy. Takto definované kódy nám umožňují studovat parametry a verze základních tvrzení z teorie lineárních kódů na tělesy pro kódy nad okruhy. Zmíněná tvrzení se týkají duálních kódů a s nimi spjatou MacWilliams identitou následovaný tvrzením o ekvivalenci kódů. Nakonec se vracíme k algebrám cest s popisem způsobu, jak je lze udělat použitelné v teorii kódů nad okruhy.cs_CZ
dc.description.abstractThis master thesis focus on special type of rings called path algebras with a goal to define and describe codes over these rings. The path algebras are defined by graphic structures called quivers which is transferred also on the modules of the path algebra. Codes themselves are defined over indecomposible injective modules of path algebra considering the latest result in ring-coding theory. So defined codes allow us to study the parameters and the versions of elementary theorems from theory of linear codes over fields for codes over rings. These are about duals codes especially, the MacWilliams identity theorem and about code equivalency. Finally we get back to path algebras and describe a way to make them applicable in theory of codes over rings.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleLineární kódy nad okruhyen_US
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-20
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId92202
dc.title.translatedLineární kódy nad okruhycs_CZ
dc.contributor.refereePříhoda, Pavel
dc.identifier.aleph001505041
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical methods of information securityen_US
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical methods of information securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csTato diplomová práce se zaměřuje na speciální typ okruhů nazývaný algebry cest s cílem definovat a popsat lineární kódy nad těmito okruhy. Algebra cest je definována pomocí grafické struktury tak zvaných quiverů, jejich struktura se pak dále přenáší i na moduly algeber cest. Samotné kódy jsou definovány nad nerozložitelnými injektivními moduly algeber cest s ohledem na nedávné výsledky z teorie kódů nad okruhy. Takto definované kódy nám umožňují studovat parametry a verze základních tvrzení z teorie lineárních kódů na tělesy pro kódy nad okruhy. Zmíněná tvrzení se týkají duálních kódů a s nimi spjatou MacWilliams identitou následovaný tvrzením o ekvivalenci kódů. Nakonec se vracíme k algebrám cest s popisem způsobu, jak je lze udělat použitelné v teorii kódů nad okruhy.cs_CZ
uk.abstract.enThis master thesis focus on special type of rings called path algebras with a goal to define and describe codes over these rings. The path algebras are defined by graphic structures called quivers which is transferred also on the modules of the path algebra. Codes themselves are defined over indecomposible injective modules of path algebra considering the latest result in ring-coding theory. So defined codes allow us to study the parameters and the versions of elementary theorems from theory of linear codes over fields for codes over rings. These are about duals codes especially, the MacWilliams identity theorem and about code equivalency. Finally we get back to path algebras and describe a way to make them applicable in theory of codes over rings.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990015050410106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV