Show simple item record

Gini coefficient maximization in binary logistic regression
dc.contributor.advisorHanzák, Tomáš
dc.creatorŘíha, Samuel
dc.date.accessioned2017-05-06T20:57:07Z
dc.date.available2017-05-06T20:57:07Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40588
dc.description.abstractV bakalářké práci je popsán model binární logistické regrese. Pomocí pojmu ztrátové funkce jsou odvozeny metody odhadu parametrů modelu. Je definována "bohatá" množina "hezkých" ztrátových funkcí - beta rodina Fisher-konzistentních ztrátových funkcí. V druhé části práce jsou definované základní ukazatele těsnosti modelu - Giniho koeficient, C-statistika, Kolmogorov-Smirnov statistika a koefi- cient determinace R2 . Dále je rozebrána možnost odhadovat parametry modelu maximalizací Giniho koeficientu. K tomuto účelu je navrženo několik algoritmů, které jsou porovnány s již existujícími metodami na jedné sadě simulovaných a třech sadách reálných dat. 1cs_CZ
dc.description.abstractThis Bachelor thesis describes a binary logistic regression model. By means of the term loss function a parameter estimation for the model is derived. A "rich" set of "proper" loss functions - beta family of Fisher-consistent loss functions - is defined. In the second part of the thesis, four basic goodness-of-fit criteria - Gini coefficient, C-statistics, Kolmogorov-Smirnov statistics and coefficient of determination R2 are defined. Further on, a possibility of parameter estimation by maximizing the Gini coefficient is analysed. Several algorithms are designed for this purpose. They are compared with so far existing methods in one simulated data set and three real ones. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectBinární logistická regresecs_CZ
dc.subjectGiniho koeficientcs_CZ
dc.subjectmaximalizace Giniho koeficientucs_CZ
dc.subjectztrátová funkcecs_CZ
dc.subjectmetoda maximální věrohodnostics_CZ
dc.subjectBinary logistic regressionen_US
dc.subjectGini coefficienten_US
dc.subjectGini coefficient maximizationen_US
dc.subjectloss functionen_US
dc.subjectmaximum likelihooden_US
dc.titleMaximalizace Giniho koeficientu v binární logistické regresics_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-09-04
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId113691
dc.title.translatedGini coefficient maximization in binary logistic regressionen_US
dc.contributor.refereeHlávka, Zdeněk
dc.identifier.aleph001498712
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csV bakalářké práci je popsán model binární logistické regrese. Pomocí pojmu ztrátové funkce jsou odvozeny metody odhadu parametrů modelu. Je definována "bohatá" množina "hezkých" ztrátových funkcí - beta rodina Fisher-konzistentních ztrátových funkcí. V druhé části práce jsou definované základní ukazatele těsnosti modelu - Giniho koeficient, C-statistika, Kolmogorov-Smirnov statistika a koefi- cient determinace R2 . Dále je rozebrána možnost odhadovat parametry modelu maximalizací Giniho koeficientu. K tomuto účelu je navrženo několik algoritmů, které jsou porovnány s již existujícími metodami na jedné sadě simulovaných a třech sadách reálných dat. 1cs_CZ
uk.abstract.enThis Bachelor thesis describes a binary logistic regression model. By means of the term loss function a parameter estimation for the model is derived. A "rich" set of "proper" loss functions - beta family of Fisher-consistent loss functions - is defined. In the second part of the thesis, four basic goodness-of-fit criteria - Gini coefficient, C-statistics, Kolmogorov-Smirnov statistics and coefficient of determination R2 are defined. Further on, a possibility of parameter estimation by maximizing the Gini coefficient is analysed. Several algorithms are designed for this purpose. They are compared with so far existing methods in one simulated data set and three real ones. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990014987120106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV