dc.contributor.advisor | Hanzák, Tomáš | |
dc.creator | Říha, Samuel | |
dc.date.accessioned | 2017-05-06T20:57:07Z | |
dc.date.available | 2017-05-06T20:57:07Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/40588 | |
dc.description.abstract | V bakalářké práci je popsán model binární logistické regrese. Pomocí pojmu ztrátové funkce jsou odvozeny metody odhadu parametrů modelu. Je definována "bohatá" množina "hezkých" ztrátových funkcí - beta rodina Fisher-konzistentních ztrátových funkcí. V druhé části práce jsou definované základní ukazatele těsnosti modelu - Giniho koeficient, C-statistika, Kolmogorov-Smirnov statistika a koefi- cient determinace R2 . Dále je rozebrána možnost odhadovat parametry modelu maximalizací Giniho koeficientu. K tomuto účelu je navrženo několik algoritmů, které jsou porovnány s již existujícími metodami na jedné sadě simulovaných a třech sadách reálných dat. 1 | cs_CZ |
dc.description.abstract | This Bachelor thesis describes a binary logistic regression model. By means of the term loss function a parameter estimation for the model is derived. A "rich" set of "proper" loss functions - beta family of Fisher-consistent loss functions - is defined. In the second part of the thesis, four basic goodness-of-fit criteria - Gini coefficient, C-statistics, Kolmogorov-Smirnov statistics and coefficient of determination R2 are defined. Further on, a possibility of parameter estimation by maximizing the Gini coefficient is analysed. Several algorithms are designed for this purpose. They are compared with so far existing methods in one simulated data set and three real ones. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Binární logistická regrese | cs_CZ |
dc.subject | Giniho koeficient | cs_CZ |
dc.subject | maximalizace Giniho koeficientu | cs_CZ |
dc.subject | ztrátová funkce | cs_CZ |
dc.subject | metoda maximální věrohodnosti | cs_CZ |
dc.subject | Binary logistic regression | en_US |
dc.subject | Gini coefficient | en_US |
dc.subject | Gini coefficient maximization | en_US |
dc.subject | loss function | en_US |
dc.subject | maximum likelihood | en_US |
dc.title | Maximalizace Giniho koeficientu v binární logistické regresi | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-09-04 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 113691 | |
dc.title.translated | Gini coefficient maximization in binary logistic regression | en_US |
dc.contributor.referee | Hlávka, Zdeněk | |
dc.identifier.aleph | 001498712 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | V bakalářké práci je popsán model binární logistické regrese. Pomocí pojmu ztrátové funkce jsou odvozeny metody odhadu parametrů modelu. Je definována "bohatá" množina "hezkých" ztrátových funkcí - beta rodina Fisher-konzistentních ztrátových funkcí. V druhé části práce jsou definované základní ukazatele těsnosti modelu - Giniho koeficient, C-statistika, Kolmogorov-Smirnov statistika a koefi- cient determinace R2 . Dále je rozebrána možnost odhadovat parametry modelu maximalizací Giniho koeficientu. K tomuto účelu je navrženo několik algoritmů, které jsou porovnány s již existujícími metodami na jedné sadě simulovaných a třech sadách reálných dat. 1 | cs_CZ |
uk.abstract.en | This Bachelor thesis describes a binary logistic regression model. By means of the term loss function a parameter estimation for the model is derived. A "rich" set of "proper" loss functions - beta family of Fisher-consistent loss functions - is defined. In the second part of the thesis, four basic goodness-of-fit criteria - Gini coefficient, C-statistics, Kolmogorov-Smirnov statistics and coefficient of determination R2 are defined. Further on, a possibility of parameter estimation by maximizing the Gini coefficient is analysed. Several algorithms are designed for this purpose. They are compared with so far existing methods in one simulated data set and three real ones. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990014987120106986 | |