Show simple item record

Numerical Analysis of a polydisperse sedimentation problem
dc.contributor.advisorFelcman, Jiří
dc.creatorDvořák, Daniel
dc.date.accessioned2017-05-06T19:50:51Z
dc.date.available2017-05-06T19:50:51Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40344
dc.description.abstractPráce se zabývá formulací problému polydisperzní sedimentace ve tvaru soustavy parciálních diferenciálních rovnic hyperbolického typu a studiem problematiky určení vlastních čísel Jacobiho matice funkce toku. Vycházíme ze zákonů zacho- vání hmotnosti a hybnosti a užitím konstitutivních vztahů odvodíme tzv. MLB model, který dále formulujeme jako jednorozměrný problém. Při jeho odvození se využívá aplikace Sherman-Morrisonovy formule pro výpočet inverzní matice k matici, která je ve tvaru součtu diagonální matice a matice vzniklé součinem dvou vektorů. Pro určení vlastních čísel Jacobiho matice funkce toku ukazu- jeme, že tato matice může být napsána ve tvaru poruchy diagonální matice. Tento rozklad umožňuje převedení problematiky vlastních čísel na řešení tzv. sekulární rovnice. Na základě řešení sekulární rovnice dokážeme hyperbolicitu systému za přepokladu, že hustoty jednotlivých částic jsou stejné. 1cs_CZ
dc.description.abstractThe problem of the polydisperse sedimentation as the system of the partial differential equations is formulated. The hyperbolicity of the problem and the determination of the eigenvalues of the Jacobi matrix of the flux function is studied. Based on the conservation laws of the mass and momentum completed by the constitutive relations the so called MLB model is derived. The one- dimensional problem is formulated. The Sherman-Morrison formula is used to find the inverse matrix of the sum of the diagonal matrix and the matrix being the product of two vectors. In order to find the eigenvalues of the Jacobi matrix of the flux function the rank two perturbation of the diagonal matrix is used. In such a way the problem of the determination of the eigenvalues is reformulated as the solution of the so called secular equation. The eigenvalues can be localized and the strong hyperbolicity of the problem under certain conditions is proved. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectPolydisperzní sedimentacecs_CZ
dc.subjectsekulární rovnicecs_CZ
dc.subjecthyperbolický systémcs_CZ
dc.subjectzákony zachovánícs_CZ
dc.subjectPolydisperse sedimentationen_US
dc.subjectsecular equationen_US
dc.subjecthyperbolic systemen_US
dc.subjectconservation lawsen_US
dc.titleNumerická analýza problému polydisperzní sedimentacecs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-06-22
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId92387
dc.title.translatedNumerical Analysis of a polydisperse sedimentation problemen_US
dc.contributor.refereeFeistauer, Miloslav
dc.identifier.aleph001481264
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráce se zabývá formulací problému polydisperzní sedimentace ve tvaru soustavy parciálních diferenciálních rovnic hyperbolického typu a studiem problematiky určení vlastních čísel Jacobiho matice funkce toku. Vycházíme ze zákonů zacho- vání hmotnosti a hybnosti a užitím konstitutivních vztahů odvodíme tzv. MLB model, který dále formulujeme jako jednorozměrný problém. Při jeho odvození se využívá aplikace Sherman-Morrisonovy formule pro výpočet inverzní matice k matici, která je ve tvaru součtu diagonální matice a matice vzniklé součinem dvou vektorů. Pro určení vlastních čísel Jacobiho matice funkce toku ukazu- jeme, že tato matice může být napsána ve tvaru poruchy diagonální matice. Tento rozklad umožňuje převedení problematiky vlastních čísel na řešení tzv. sekulární rovnice. Na základě řešení sekulární rovnice dokážeme hyperbolicitu systému za přepokladu, že hustoty jednotlivých částic jsou stejné. 1cs_CZ
uk.abstract.enThe problem of the polydisperse sedimentation as the system of the partial differential equations is formulated. The hyperbolicity of the problem and the determination of the eigenvalues of the Jacobi matrix of the flux function is studied. Based on the conservation laws of the mass and momentum completed by the constitutive relations the so called MLB model is derived. The one- dimensional problem is formulated. The Sherman-Morrison formula is used to find the inverse matrix of the sum of the diagonal matrix and the matrix being the product of two vectors. In order to find the eigenvalues of the Jacobi matrix of the flux function the rank two perturbation of the diagonal matrix is used. In such a way the problem of the determination of the eigenvalues is reformulated as the solution of the so called secular equation. The eigenvalues can be localized and the strong hyperbolicity of the problem under certain conditions is proved. 1en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV