Show simple item record

Alternativní matematická notace a její aplikace v kalkulu
dc.contributor.advisorPick, Luboš
dc.creatorMarian, Jakub
dc.date.accessioned2017-05-06T19:48:02Z
dc.date.available2017-05-06T19:48:02Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/40333
dc.description.abstractPráce zkoumá možnosti formalizace klasických pojmů matematické analýzy bez použití proměnných. Za tímto účelem vytváří nový matematický "jazyk", jenž je schopen popsat všechny klasické výpočty v matematické analýze (přesněji výpočty limit, konečných diferencí, jednorozměrných derivací a určitých a neurčitých inte- grálů) bez použití proměnných. Výpočty zapsané v tomto "jazyce" obsahují pouze symboly funkcí (a jsou tedy zcela rigorózní a nedávají prostor k vágnímu výkladu použitých symbolů). Obecně jsou také výrazně kratší a matematicky průhlednější než jejich tradiční verze (např. při výpočtech integrálů není potřeba zavádět žádné nové symboly a určitý integrál je formalizován tak, že všechna pravidla pro výpočet neurčitých integrálů (včetně "substitučních" pravidel) jsou přímo přenosná na pří- pad určitých integrálů. Práce také formalizuje Landauovu o-notaci způsobem, díky němuž je možné provádět s ní výpočty limit zcela rigorózním způsobem. 1cs_CZ
dc.description.abstractWe explore the possibility of formalizing classical notions in calculus without using the notion of variable. We provide a new mathematical 'language' capable of performing all classical computations (namely computing limits, finite differences, one-dimensional derivatives, and indefinite and definite integrals) without any need to introduce a variable. Equations written using our notation contain only func- tion symbols (and as such are completely rigorous and don't leave any room for vague interpretations). They also tend to be much shorter and more mathemati- cally transparent than their traditional counterparts (for example, there is no need for introduction of new symbols in integration, and definite integration is formalized in such a way that all rules (including 'substitution' rules) for indefinite integration translate directly to definite integration). We also fully formalize the Landau little-o notation in a way that makes computation of limits using it fully rigorous. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectalternativní matematická notacecs_CZ
dc.subjectkalkuluscs_CZ
dc.subjectkonečné diferencecs_CZ
dc.subjectintegracecs_CZ
dc.subjectderivovánícs_CZ
dc.subjectalternative mathematical notationen_US
dc.subjectcalculusen_US
dc.subjectfinite differencesen_US
dc.subjectintegrationen_US
dc.subjectdifferentiationen_US
dc.titleAlternative mathematical notation and its applications in calculusen_US
dc.typebakalářská prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-06-21
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId92342
dc.title.translatedAlternativní matematická notace a její aplikace v kalkulucs_CZ
dc.contributor.refereeZahradník, Miloš
dc.identifier.aleph001481016
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPráce zkoumá možnosti formalizace klasických pojmů matematické analýzy bez použití proměnných. Za tímto účelem vytváří nový matematický "jazyk", jenž je schopen popsat všechny klasické výpočty v matematické analýze (přesněji výpočty limit, konečných diferencí, jednorozměrných derivací a určitých a neurčitých inte- grálů) bez použití proměnných. Výpočty zapsané v tomto "jazyce" obsahují pouze symboly funkcí (a jsou tedy zcela rigorózní a nedávají prostor k vágnímu výkladu použitých symbolů). Obecně jsou také výrazně kratší a matematicky průhlednější než jejich tradiční verze (např. při výpočtech integrálů není potřeba zavádět žádné nové symboly a určitý integrál je formalizován tak, že všechna pravidla pro výpočet neurčitých integrálů (včetně "substitučních" pravidel) jsou přímo přenosná na pří- pad určitých integrálů. Práce také formalizuje Landauovu o-notaci způsobem, díky němuž je možné provádět s ní výpočty limit zcela rigorózním způsobem. 1cs_CZ
uk.abstract.enWe explore the possibility of formalizing classical notions in calculus without using the notion of variable. We provide a new mathematical 'language' capable of performing all classical computations (namely computing limits, finite differences, one-dimensional derivatives, and indefinite and definite integrals) without any need to introduce a variable. Equations written using our notation contain only func- tion symbols (and as such are completely rigorous and don't leave any room for vague interpretations). They also tend to be much shorter and more mathemati- cally transparent than their traditional counterparts (for example, there is no need for introduction of new symbols in integration, and definite integration is formalized in such a way that all rules (including 'substitution' rules) for indefinite integration translate directly to definite integration). We also fully formalize the Landau little-o notation in a way that makes computation of limits using it fully rigorous. 1en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990014810160106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV