Show simple item record

Character recognition of machine-written documents
dc.contributor.advisorBlažek, Jan
dc.creatorKindermann, Hubert
dc.date.accessioned2017-04-27T22:11:55Z
dc.date.available2017-04-27T22:11:55Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/38644
dc.description.abstractV předložené práci řešíme problém extrakce a rozpoznání znaků z tištěných dokumentů digitalizovaných skenerem nebo fotoaparátem. Uvádíme způsob normalizace osvětlení dokumentů rezistentní vůči šumu. Pokračujeme extrakcí jednotlivých znaků z dokumentu a následně jejich rozpoznáním pomocí systému vícevrstvých neurálních sítí s dopředným šířením. Okrajově se zabýváme zpracováním výsledné množiny rozpoznaných symbolů, které je nezbytné pro další práci s vytěženým textem. Posledním krokem je korekce výstupu založená na okolích jednotlivých znaků. Podařilo se nám implementovat automatický systém obsahující všechny zmíněné komponenty.cs_CZ
dc.description.abstractIn the present thesis we solve the problem of symbol extraction and recognition from printed documents digitized by the scanner or camera. We introduce a noise resistant algorithm of document lighting normalization. We continue with the extraction of individual characters from the document and their recognition with a system of feedforward multilayer neural networks. We also focus on processing of the resulting set of recognized characters, which is necessary for further use of the extracted text. The last step is correction of the output based on surrounding letters of each character. We have successfully implemented an automatic system containing all the above components.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectOptické rozpoznávání znakůcs_CZ
dc.subjectExtrakce textucs_CZ
dc.subjectNormalizace osvětlenícs_CZ
dc.subjectOptical Character Recognitionen_US
dc.subjectText Extractionen_US
dc.subjectLightning Normalizationen_US
dc.titleVytěžování textu ze strojově psaných dokumentůcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-06-20
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId96477
dc.title.translatedCharacter recognition of machine-written documentsen_US
dc.contributor.refereeKolomazník, Jan
dc.identifier.aleph001371378
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Computer Scienceen_US
thesis.degree.disciplineObecná informatikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná informatikacs_CZ
uk.degree-discipline.enGeneral Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV předložené práci řešíme problém extrakce a rozpoznání znaků z tištěných dokumentů digitalizovaných skenerem nebo fotoaparátem. Uvádíme způsob normalizace osvětlení dokumentů rezistentní vůči šumu. Pokračujeme extrakcí jednotlivých znaků z dokumentu a následně jejich rozpoznáním pomocí systému vícevrstvých neurálních sítí s dopředným šířením. Okrajově se zabýváme zpracováním výsledné množiny rozpoznaných symbolů, které je nezbytné pro další práci s vytěženým textem. Posledním krokem je korekce výstupu založená na okolích jednotlivých znaků. Podařilo se nám implementovat automatický systém obsahující všechny zmíněné komponenty.cs_CZ
uk.abstract.enIn the present thesis we solve the problem of symbol extraction and recognition from printed documents digitized by the scanner or camera. We introduce a noise resistant algorithm of document lighting normalization. We continue with the extraction of individual characters from the document and their recognition with a system of feedforward multilayer neural networks. We also focus on processing of the resulting set of recognized characters, which is necessary for further use of the extracted text. The last step is correction of the output based on surrounding letters of each character. We have successfully implemented an automatic system containing all the above components.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV