Show simple item record

Coupling and speed of convergence of discrete MCMC algorithms.
dc.contributor.advisorProkešová, Michaela
dc.creatorKalaš, Martin
dc.date.accessioned2017-04-27T19:06:43Z
dc.date.available2017-04-27T19:06:43Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/37791
dc.description.abstractKonvergence marginálního rozdělení Markovova řetězce ke stacionárnímu rozdělení je důležitá vlastnost, která má v moderní matematice mnoho aplikací. Jednou z nich jsou např. Markov Chain Monte Carlo algoritmy, které slouží ke generování realizací ze složitých pravděpodobnostních rozdělení. Pro takové aplikace je klíčové správně odhadnout tzv. mixing time Markovova řetězce, tj. počet kroků nutný k tomu, aby se marginální rozdělení řetězce lišilo od stacionárního rozdělení jen s povolenou nepřesností. Cílem této práce je popsat metodu odhadu mixing time, která využívá obecnou pravděpodobnostní techniku zvanou coupling. V první části textu bude vybudován teoretický aparát, na jehož základě tuto metodu odvodíme. Ve druhé části předvedeme její použití na klasických příkladech Markovových řetězců, kterým je například náhodná procházka po grafu. V závěru ukážeme odhad rychlosti konvergence Metropolisova řetězce pro přípustná obarvení grafu, jakožto typického příkladu MCMC algoritmu.cs_CZ
dc.description.abstractConvergence of the marginal distribution of a Markov chain to its stationary distribution is an essential property of this model with many applications in different fields of modern mathematics. Such typical applications are for example the Markov Chain Monte Carlo algorithms, which are useful for sampling from complicated probability distributions. A crucial point for usefulness of such algorithms is the so called mixing time of corresponding Markov chain, i.e. the number of steps the chain has to make for the difference between its current marginal distribution and stationary distribution to be sufficiently small. The main goal of this thesis is to describe a method for estimation of the mixing time based on a probability technique called coupling. In the first part we collect some definitions and propositions to show how the method works. Later the method is demonstrated on several traditional examples of Markov chains including e.g. random walk on a graph. In the end we study Metropolis chain on the set of proper colorings of a graph as a specific example of MCMC algorithm and show how to estimate its mixing time.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMarkovův řetězeccs_CZ
dc.subjectstacionární rozdělenícs_CZ
dc.subjectkonvergencecs_CZ
dc.subjectcouplingcs_CZ
dc.subjectMCMC algoritmuscs_CZ
dc.subjectMarkov chainen_US
dc.subjectstationary distributionen_US
dc.subjectconvergenceen_US
dc.subjectcouplingen_US
dc.subjectMCMC algorithmen_US
dc.titleCoupling a rychlost konvergence diskrétních MCMC algoritmů.cs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-06-27
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId91200
dc.title.translatedCoupling and speed of convergence of discrete MCMC algorithms.en_US
dc.contributor.refereeDvořák, Jiří
dc.identifier.aleph001370997
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csKonvergence marginálního rozdělení Markovova řetězce ke stacionárnímu rozdělení je důležitá vlastnost, která má v moderní matematice mnoho aplikací. Jednou z nich jsou např. Markov Chain Monte Carlo algoritmy, které slouží ke generování realizací ze složitých pravděpodobnostních rozdělení. Pro takové aplikace je klíčové správně odhadnout tzv. mixing time Markovova řetězce, tj. počet kroků nutný k tomu, aby se marginální rozdělení řetězce lišilo od stacionárního rozdělení jen s povolenou nepřesností. Cílem této práce je popsat metodu odhadu mixing time, která využívá obecnou pravděpodobnostní techniku zvanou coupling. V první části textu bude vybudován teoretický aparát, na jehož základě tuto metodu odvodíme. Ve druhé části předvedeme její použití na klasických příkladech Markovových řetězců, kterým je například náhodná procházka po grafu. V závěru ukážeme odhad rychlosti konvergence Metropolisova řetězce pro přípustná obarvení grafu, jakožto typického příkladu MCMC algoritmu.cs_CZ
uk.abstract.enConvergence of the marginal distribution of a Markov chain to its stationary distribution is an essential property of this model with many applications in different fields of modern mathematics. Such typical applications are for example the Markov Chain Monte Carlo algorithms, which are useful for sampling from complicated probability distributions. A crucial point for usefulness of such algorithms is the so called mixing time of corresponding Markov chain, i.e. the number of steps the chain has to make for the difference between its current marginal distribution and stationary distribution to be sufficiently small. The main goal of this thesis is to describe a method for estimation of the mixing time based on a probability technique called coupling. In the first part we collect some definitions and propositions to show how the method works. Later the method is demonstrated on several traditional examples of Markov chains including e.g. random walk on a graph. In the end we study Metropolis chain on the set of proper colorings of a graph as a specific example of MCMC algorithm and show how to estimate its mixing time.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV