Show simple item record

Recursive linear models and conditional independence structures
dc.contributor.advisorStudený, Milan
dc.creatorZouhar, Jan
dc.date.accessioned2017-04-27T18:49:47Z
dc.date.available2017-04-27T18:49:47Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/37725
dc.description.abstractLineární rekurzivní systémy (LRS) popisují lineární funkční vztahy spojitých, zpravidla normálně rozdělených náhodných veličin. Pro kvalitativní popis těchto vztahů se využívá acyklických orientovaných grafů. Grafy se využívají i v jiné statistické disciplíně, a sice při popisu struktury podmíněné nezávislosti (PN) systému náhodných veličin. Jedním z cílů práce bylo ukázat, že v rámci regulárních gaussovských rozdělení oba uvedené přístupy splývají: je-li dán acyklický orientovaný graf, lze statistický model LRS vymezený tímto grafem ekvivalentně zavést jako třídu gaussovkých distribucí, jejichž struktura PN odpovídá témuž grafu. Některé vztahy mezi grafem LRS a jeho strukturou PN jsme dále zobecnili i mimo rámec gaussovských distribucí. Dalším tématem je popis vztahu mezi grafem LRS a kovariancemi jeho veličin. Zde jsme odvodili vztah, který je jistou analogií metody koeficientů na cestách, kterou zavedl ve 20. letech minulého století americký genetik Sewall Wright.cs_CZ
dc.description.abstractLinear recursive systems (LRS) describe linear relationships among continuous random variables (typically, normally distributed ones). Acyclic oriented graphs are used to provide a qualitative description of these relationships. In a different branch of statistics, graphs serve as a means to describe conditional independence (CI) structures in systems of random variables. One of the aims of the thesis is to show that within the class of regular Gaussian distributions, both approaches coincide: for a given acyclic oriented graph, the statistical model of LRS specified by the graph is equivalent to a class of Gaussian distributions with CI structures that accord with the same graph. Furthermore, we generalized some of the relations between a graph of LRS and its CI structure outside the scope of Gaussian distributions. Another focus of the thesis is the relation between the graph of a LRS and the covariances among its variables. We derived a relationship that is analogous to the method of path coefficients which was introduced in the 1920s by the American geneticist Sewall Wright.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectlineární rekursivní systémycs_CZ
dc.subjectstruktury podmíněné nezávislostics_CZ
dc.subjectgrafické modelycs_CZ
dc.subjectgaussovská rozdělenícs_CZ
dc.subjectlinear recursive systemsen_US
dc.subjectconditional independence structuresen_US
dc.subjectgraphical modelsen_US
dc.subjectGaussian distributionsen_US
dc.titleRekursivní lineární modely a struktury podmíněné nezávislostics_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-01-26
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId76628
dc.title.translatedRecursive linear models and conditional independence structuresen_US
dc.contributor.refereeHlubinka, Daniel
dc.identifier.aleph001284309
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csLineární rekurzivní systémy (LRS) popisují lineární funkční vztahy spojitých, zpravidla normálně rozdělených náhodných veličin. Pro kvalitativní popis těchto vztahů se využívá acyklických orientovaných grafů. Grafy se využívají i v jiné statistické disciplíně, a sice při popisu struktury podmíněné nezávislosti (PN) systému náhodných veličin. Jedním z cílů práce bylo ukázat, že v rámci regulárních gaussovských rozdělení oba uvedené přístupy splývají: je-li dán acyklický orientovaný graf, lze statistický model LRS vymezený tímto grafem ekvivalentně zavést jako třídu gaussovkých distribucí, jejichž struktura PN odpovídá témuž grafu. Některé vztahy mezi grafem LRS a jeho strukturou PN jsme dále zobecnili i mimo rámec gaussovských distribucí. Dalším tématem je popis vztahu mezi grafem LRS a kovariancemi jeho veličin. Zde jsme odvodili vztah, který je jistou analogií metody koeficientů na cestách, kterou zavedl ve 20. letech minulého století americký genetik Sewall Wright.cs_CZ
uk.abstract.enLinear recursive systems (LRS) describe linear relationships among continuous random variables (typically, normally distributed ones). Acyclic oriented graphs are used to provide a qualitative description of these relationships. In a different branch of statistics, graphs serve as a means to describe conditional independence (CI) structures in systems of random variables. One of the aims of the thesis is to show that within the class of regular Gaussian distributions, both approaches coincide: for a given acyclic oriented graph, the statistical model of LRS specified by the graph is equivalent to a class of Gaussian distributions with CI structures that accord with the same graph. Furthermore, we generalized some of the relations between a graph of LRS and its CI structure outside the scope of Gaussian distributions. Another focus of the thesis is the relation between the graph of a LRS and the covariances among its variables. We derived a relationship that is analogous to the method of path coefficients which was introduced in the 1920s by the American geneticist Sewall Wright.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990012843090106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV