Show simple item record

Teoretické otázky popisu chování krylovovských metod
dc.contributor.advisorStrakoš, Zdeněk
dc.creatorStrnad, Otto
dc.date.accessioned2021-03-23T21:51:20Z
dc.date.available2021-03-23T21:51:20Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/33412
dc.description.abstractPředkládaná diplomová práce se zabývá analýzou konvergence metody GMRES. Vysvětluje základní principy metod CG, MINRES a GMRES. Práce shrnuje některé známé konvergenční výsledky týkající se těchto metod. Shrnu- je také známé charakterizace matic a pravých stran generujících shodné Krylovovské reziduální prostory. Jsou ukázány souvislosti a rozdly mezi různými úhly pohledu na analýzu rychlosti konvergence metody GMRES. Předpokládáme, že pokud se konvergenční křivka metody GMRES apliko- vané na matici , jež není normální, a pravou stranu chová, jako by byla určena vlastními čísly matice , potom existuje téměř normální matice, jež má shodné spektrum, jako matice a pro pravou stranu , shodnou GMRES konvergenční křivku, jako matice (Předpokládáme, že počáteční aproxi- mace 0 = 0). K prozkoumání tohoto předpokladu je provedeno několik nu- merickch experimentů. Předkládaná práce popisuje nepublikovaný výsledek Gérarda Meuranta, vzorec pro normu k-té chyby metody GMRES aplikované na matici a pravou stranu a odvození tohoto vzorce. Dále je odvozen horní odhad -té chyby GMRES. Tento odhad je minimalizován přes spek- trum.cs_CZ
dc.description.abstractThe presented thesis is focused on the GMRES convergence analysis. The basic principles of CG, MINRES and GMRES are briefly explained. The thesis summarizes some known convergence results of these methods. The known characterizations of the matrices and the right hand sides gen- erating the same Krylov residual spaces are summarized. Connections and the differences between the different points of view on GMRES convergence analysis are shown. We expect that if the convergence curve of GMRES applied to the nonnormal matrix and the right hand side seems to be de- termined by the eigenvalues of the matrix then exists a matrix that is close to normal and has the same spectrum as the matrix and for the right hand side has the same GMRES convergence curve (We assume that the initial approximation 0 = 0). Several numerical experiments are done to examine this assumption. This thesis describes an unpublished result of Gérard Meu- rant which is the formula for the norm of the -th error of GMRES applied to the matrix and right hand side and its derivation. The upper estimate of the -th GMRES error is derived. This estimate is minimized via spectrum.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectGMREScs_CZ
dc.subjectanalýza konvergencecs_CZ
dc.subjectKrylovovský podprostorcs_CZ
dc.subjectGMRESen_US
dc.subjectconvergence analysisen_US
dc.subjectKrylov subspaceen_US
dc.titleTeoretické otázky popisu chování krylovovských metoden_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-02-03
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47346
dc.title.translatedTeoretické otázky popisu chování krylovovských metodcs_CZ
dc.contributor.refereeZítko, Jan
dc.identifier.aleph001286310
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical modelling in physics and technologyen_US
thesis.degree.disciplineMatematické modelování ve fyzice a technicecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické modelování ve fyzice a technicecs_CZ
uk.degree-discipline.enMathematical modelling in physics and technologyen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPředkládaná diplomová práce se zabývá analýzou konvergence metody GMRES. Vysvětluje základní principy metod CG, MINRES a GMRES. Práce shrnuje některé známé konvergenční výsledky týkající se těchto metod. Shrnu- je také známé charakterizace matic a pravých stran generujících shodné Krylovovské reziduální prostory. Jsou ukázány souvislosti a rozdly mezi různými úhly pohledu na analýzu rychlosti konvergence metody GMRES. Předpokládáme, že pokud se konvergenční křivka metody GMRES apliko- vané na matici , jež není normální, a pravou stranu chová, jako by byla určena vlastními čísly matice , potom existuje téměř normální matice, jež má shodné spektrum, jako matice a pro pravou stranu , shodnou GMRES konvergenční křivku, jako matice (Předpokládáme, že počáteční aproxi- mace 0 = 0). K prozkoumání tohoto předpokladu je provedeno několik nu- merickch experimentů. Předkládaná práce popisuje nepublikovaný výsledek Gérarda Meuranta, vzorec pro normu k-té chyby metody GMRES aplikované na matici a pravou stranu a odvození tohoto vzorce. Dále je odvozen horní odhad -té chyby GMRES. Tento odhad je minimalizován přes spek- trum.cs_CZ
uk.abstract.enThe presented thesis is focused on the GMRES convergence analysis. The basic principles of CG, MINRES and GMRES are briefly explained. The thesis summarizes some known convergence results of these methods. The known characterizations of the matrices and the right hand sides gen- erating the same Krylov residual spaces are summarized. Connections and the differences between the different points of view on GMRES convergence analysis are shown. We expect that if the convergence curve of GMRES applied to the nonnormal matrix and the right hand side seems to be de- termined by the eigenvalues of the matrix then exists a matrix that is close to normal and has the same spectrum as the matrix and for the right hand side has the same GMRES convergence curve (We assume that the initial approximation 0 = 0). Several numerical experiments are done to examine this assumption. This thesis describes an unpublished result of Gérard Meu- rant which is the formula for the norm of the -th error of GMRES applied to the matrix and right hand side and its derivation. The upper estimate of the -th GMRES error is derived. This estimate is minimized via spectrum.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code2
dc.contributor.consultantTichý, Petr
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV