Show simple item record

Rafinácia paralelných korpusov z webu
dc.contributor.advisorHolubová, Irena
dc.creatorKúdela, Jakub
dc.date.accessioned2021-05-20T15:07:56Z
dc.date.available2021-05-20T15:07:56Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/31195
dc.description.abstractNázov: Rafinácia paralelných korpusov z webu Autor: Bc. Jakub Kúdela E-mailová adresa autora: jakub.kudela@gmail.com Katedra: Katedra Softwarového Inženýrství Vedúci práce: Doc. RNDr. Irena Holubová, Ph.D. E-mailová adresa vedúceho: holubova@ksi.mff.cuni.cz Konzultant práce: RNDr. Ondřej Bojar, Ph.D. E-mailová adresa konzultanta: bojar@ufal.mff.cuni.cz Abstrakt: Štatistický strojový preklad (SMT, statistical machine translation) je v súčasnosti jeden z najpopulárnejších prístupov ku strojovému prekladu. Tento prístup využíva štatistické modely, ktorých parametre sú získané z analýzy para- lelných korpusov potrebných pre tréning. Existencia paralelného korpusu je naj- d^oležitejšou prerekvizitou pre vytvorenie účinného SMT prekladača. Viaceré vlas- nosti tohto korpusu, ako napríklad objem a kvalita, ovplyvňujú výsledky prekladu do značnej miery. Web m^ožeme považovat' za neustále rastúci zdroj značného množstva paralelných dát, ktoré m^ožu byt' rafinované a zahrnuté do trénovacieho procesu, čím m^ožu zdokonalit' výsledky SMT prekladača. Prvá čast' práce suma- rizuje niektoré z rozšírených metód pre získavanie paralelného korpusu z webu. Väčšina z metód hl'adá páry paralelných webových stránok podl'a podobnosti ich...cs_CZ
dc.description.abstractTitle: Mining Parallel Corpora from the Web Author: Bc. Jakub Kúdela Author's e-mail address: jakub.kudela@gmail.com Department: Department of Software Engineering Thesis supervisor: Doc. RNDr. Irena Holubová, Ph.D. Supervisor's e-mail address: holubova@ksi.mff.cuni.cz Thesis consultant: RNDr. Ondřej Bojar, Ph.D. Consultant's e-mail adress: bojar@ufal.mff.cuni.cz Abstract: Statistical machine translation (SMT) is one of the most popular ap- proaches to machine translation today. It uses statistical models whose parame- ters are derived from the analysis of a parallel corpus required for the training. The existence of a parallel corpus is the most important prerequisite for building an effective SMT system. Various properties of the corpus, such as its volume and quality, highly affect the results of the translation. The web can be considered as an ever-growing source of considerable amounts of parallel data to be mined and included in the training process, thus increasing the effectiveness of SMT systems. The first part of this thesis summarizes some of the popular methods for acquiring parallel corpora from the web. Most of these methods search for pairs of parallel web pages by looking for the similarity of their structures. How- ever, we believe there still exists a non-negligible amount of parallel...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmining parallel corporaen_US
dc.subjectbilingual document alignmenten_US
dc.subjectword2vecen_US
dc.subjectlocality-sensitive hashingen_US
dc.subjectrafinácia paralelných korpusovcs_CZ
dc.subjectbilingválne dokumentové zarovnaniecs_CZ
dc.subjectword2veccs_CZ
dc.subjectlokálne-senzitívne hašovaniecs_CZ
dc.titleMining Parallel Corpora from the Weben_US
dc.typerigorózní prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-12-15
dc.description.departmentKatedra softwarového inženýrstvícs_CZ
dc.description.departmentDepartment of Software Engineeringen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId180664
dc.title.translatedRafinácia paralelných korpusov z webucs_CZ
dc.identifier.aleph002133694
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineSoftware Systemsen_US
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwarového inženýrstvícs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software Engineeringen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware Systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csNázov: Rafinácia paralelných korpusov z webu Autor: Bc. Jakub Kúdela E-mailová adresa autora: jakub.kudela@gmail.com Katedra: Katedra Softwarového Inženýrství Vedúci práce: Doc. RNDr. Irena Holubová, Ph.D. E-mailová adresa vedúceho: holubova@ksi.mff.cuni.cz Konzultant práce: RNDr. Ondřej Bojar, Ph.D. E-mailová adresa konzultanta: bojar@ufal.mff.cuni.cz Abstrakt: Štatistický strojový preklad (SMT, statistical machine translation) je v súčasnosti jeden z najpopulárnejších prístupov ku strojovému prekladu. Tento prístup využíva štatistické modely, ktorých parametre sú získané z analýzy para- lelných korpusov potrebných pre tréning. Existencia paralelného korpusu je naj- d^oležitejšou prerekvizitou pre vytvorenie účinného SMT prekladača. Viaceré vlas- nosti tohto korpusu, ako napríklad objem a kvalita, ovplyvňujú výsledky prekladu do značnej miery. Web m^ožeme považovat' za neustále rastúci zdroj značného množstva paralelných dát, ktoré m^ožu byt' rafinované a zahrnuté do trénovacieho procesu, čím m^ožu zdokonalit' výsledky SMT prekladača. Prvá čast' práce suma- rizuje niektoré z rozšírených metód pre získavanie paralelného korpusu z webu. Väčšina z metód hl'adá páry paralelných webových stránok podl'a podobnosti ich...cs_CZ
uk.abstract.enTitle: Mining Parallel Corpora from the Web Author: Bc. Jakub Kúdela Author's e-mail address: jakub.kudela@gmail.com Department: Department of Software Engineering Thesis supervisor: Doc. RNDr. Irena Holubová, Ph.D. Supervisor's e-mail address: holubova@ksi.mff.cuni.cz Thesis consultant: RNDr. Ondřej Bojar, Ph.D. Consultant's e-mail adress: bojar@ufal.mff.cuni.cz Abstract: Statistical machine translation (SMT) is one of the most popular ap- proaches to machine translation today. It uses statistical models whose parame- ters are derived from the analysis of a parallel corpus required for the training. The existence of a parallel corpus is the most important prerequisite for building an effective SMT system. Various properties of the corpus, such as its volume and quality, highly affect the results of the translation. The web can be considered as an ever-growing source of considerable amounts of parallel data to be mined and included in the training process, thus increasing the effectiveness of SMT systems. The first part of this thesis summarizes some of the popular methods for acquiring parallel corpora from the web. Most of these methods search for pairs of parallel web pages by looking for the similarity of their structures. How- ever, we believe there still exists a non-negligible amount of parallel...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrstvícs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990021336940106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV