Show simple item record

Deconvolution
Dekonvoluce
dc.contributor.advisorHlávka, Zdeněk
dc.creatorDibák, Miroslav
dc.date.accessioned2017-04-20T15:54:48Z
dc.date.available2017-04-20T15:54:48Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/27418
dc.description.abstractThe convolution has a big signification in mathematical statistics. In the opening chapter, we define basic terms used in the thesis and we introduce the convolution and basic relations related to this term. In the second chapter, we attend to kernel estimators, mainly the kernel density estimator and the kernel charakteristic function estimator. In the third chapter, we attend to the deconvolution and we summarize the basic theoretical properties of the deconvolution estimator. In the last chapter of this thesis we present a possible application in medicine. The properties of the proposed estimator are investigated in a small simulation study.en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleDekonvolucesk_SK
dc.typediplomová prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-09-22
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47618
dc.title.translatedDeconvolutionen_US
dc.title.translatedDekonvolucecs_CZ
dc.contributor.refereeHurt, Jan
dc.identifier.aleph001171471
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineFinanční a pojistná matematikacs_CZ
thesis.degree.disciplineFinancial and insurance mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční a pojistná matematikacs_CZ
uk.degree-discipline.enFinancial and insurance mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.enThe convolution has a big signification in mathematical statistics. In the opening chapter, we define basic terms used in the thesis and we introduce the convolution and basic relations related to this term. In the second chapter, we attend to kernel estimators, mainly the kernel density estimator and the kernel charakteristic function estimator. In the third chapter, we attend to the deconvolution and we summarize the basic theoretical properties of the deconvolution estimator. In the last chapter of this thesis we present a possible application in medicine. The properties of the proposed estimator are investigated in a small simulation study.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV