Show simple item record

Separable reduction theorems in functional analysis
dc.contributor.advisorKalenda, Ondřej
dc.creatorCúth, Marek
dc.date.accessioned2017-04-20T13:50:24Z
dc.date.available2017-04-20T13:50:24Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/26945
dc.description.abstractV předložené práci zkoumáme, zda se některé vlastnosti množin a funkcí dají separabilně redukovat. To jest, zda platí, že množina (funkce) má danou vlastnost právě tehdy, když ji má ve speciálním separabilním podprostoru, závislém na této množin (funkci). Zabýváme se vlastnostmi množin "býti hustá, řídká, první kategorie, reziduální a pórovitá" a vlastnostmi funkcí "býti spojitá, polospojitá a fréchetovsky diferencovatelná". Jednotlivé výsledky je možné díky vhodně zvolené metodě generování podprostorů kombinovat, a tak dostáváme i separabilní redukce vlastností funkcí typu "funkce je spojitá na husté podmnožin", "funkce je fréchetovsky diferencovatelná na reziduální podmnožin", atd. Nakonec ukazujeme některé aplikace, které rozšiřují platnost tvrzení dokázaných Zajíčkem, Lindenstraussema Preissem.cs_CZ
dc.description.abstractIn the presented work we are studying, whether some properties of sets (functions) can be separably reduced. It means, whether it is true, that a set (function) has given property if and only if it has this property in a special separable subspace, dependent only on the given set (function). We are interested in properties of sets "be dense, nowhere dense, meager, residual and porous" and in properties of functions "be continuous, semicontinuous and Fréchet di erentiable". Out method of creating separable subspaces enables us to combine our results, and so we easily get separable reductions of function properties such as "be continuous on a dense subset", "be Fréchet di erentiable on a residual subset", etc. Finally, we show some applications of presented separable reduction theorems, which enable us to show, that some propositions proven by Zajíček, Lindenstrauss and Preiss hold under other assumptions as well.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleSeparabilní redukce ve funkcionální analýzecs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-06-02
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId58326
dc.title.translatedSeparable reduction theorems in functional analysisen_US
dc.contributor.refereeHolický, Petr
dc.identifier.aleph001445601
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV předložené práci zkoumáme, zda se některé vlastnosti množin a funkcí dají separabilně redukovat. To jest, zda platí, že množina (funkce) má danou vlastnost právě tehdy, když ji má ve speciálním separabilním podprostoru, závislém na této množin (funkci). Zabýváme se vlastnostmi množin "býti hustá, řídká, první kategorie, reziduální a pórovitá" a vlastnostmi funkcí "býti spojitá, polospojitá a fréchetovsky diferencovatelná". Jednotlivé výsledky je možné díky vhodně zvolené metodě generování podprostorů kombinovat, a tak dostáváme i separabilní redukce vlastností funkcí typu "funkce je spojitá na husté podmnožin", "funkce je fréchetovsky diferencovatelná na reziduální podmnožin", atd. Nakonec ukazujeme některé aplikace, které rozšiřují platnost tvrzení dokázaných Zajíčkem, Lindenstraussema Preissem.cs_CZ
uk.abstract.enIn the presented work we are studying, whether some properties of sets (functions) can be separably reduced. It means, whether it is true, that a set (function) has given property if and only if it has this property in a special separable subspace, dependent only on the given set (function). We are interested in properties of sets "be dense, nowhere dense, meager, residual and porous" and in properties of functions "be continuous, semicontinuous and Fréchet di erentiable". Out method of creating separable subspaces enables us to combine our results, and so we easily get separable reductions of function properties such as "be continuous on a dense subset", "be Fréchet di erentiable on a residual subset", etc. Finally, we show some applications of presented separable reduction theorems, which enable us to show, that some propositions proven by Zajíček, Lindenstrauss and Preiss hold under other assumptions as well.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990014456010106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV