Show simple item record

Bimodal distributions
dc.creatorDošlá, Šárka
dc.date.accessioned2021-05-19T17:24:43Z
dc.date.available2021-05-19T17:24:43Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/24703
dc.description.abstractWe study the bimodality of the mixture of two unimodal distributions. In the special cases we give necessary and su±cient conditions ensuring the bimodality of such mixtures. We study the probability of the event that the histogram of a random sample from unimodal distribution indicates two peaks. For some types of unimodal distributions it is possible to simplify this problem and we can study histograms of samples from uniform distribution instead. We show that for increasing number of observations the probability that histogram with N classes has two peaks tends to the probability that the random permutation of numbers 1....N is bimodal.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleBimodální rozdělenícs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-06-10
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId73828
dc.title.translatedBimodal distributionsen_US
dc.identifier.aleph000831606
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.enWe study the bimodality of the mixture of two unimodal distributions. In the special cases we give necessary and su±cient conditions ensuring the bimodality of such mixtures. We study the probability of the event that the histogram of a random sample from unimodal distribution indicates two peaks. For some types of unimodal distributions it is possible to simplify this problem and we can study histograms of samples from uniform distribution instead. We show that for increasing number of observations the probability that histogram with N classes has two peaks tends to the probability that the random permutation of numbers 1....N is bimodal.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990008316060106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV