Show simple item record

Lexical Association Measures Collocation Extraction
dc.contributor.advisorHajič, Jan
dc.creatorPecina, Pavel
dc.date.accessioned2021-05-19T17:46:24Z
dc.date.available2021-05-19T17:46:24Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11956/24519
dc.description.abstractLexical Association Measures: Collocation Extraction Pavel Pecina Abstract of Doctoral Thesis This thesis is devoted to an empirical study of lexical association measures and their application for collocation extraction. We focus on two-word (bigram) collocations only. We compiled a comprehensive inventory of 82 lexical association measures and present their empirical evaluation on four reference data sets: dependency bigrams from the manually annotated Prague Dependency Trcebank, surface bigrams from the same source, instances of the previous from the Czech National Corpus provided with automatically assigned lemmas and part-of-speech tags, and distance verb-noun bigrams from the automatically part-of-spcech tagged Swedish Parole Corpus. Collocation candidates in the reference data sets were manually annotated and identified as collocations and non-collocations. The evaluation scheme is based on measuring the quality of ranking collocation candidates according to their chance to form collocations. The methods are compared by precision-recall curves and mean average precision scores adopted from the field of information retrieval. Tests of statistical significance were also performed. Further, we study the possibility of combining lexical association measures and present empirical results of several...en_US
dc.description.abstractLexical Association Measures:Collocation Extraction Pavel Pecina Abstract of Doctoral Thesis This thesis is devoted to an empirical study of lexical association measures and their application for collocation extraction. We focus on two-word (bigram) collocations only. We compiled a comprehensive inventory of 82 lexical association measures and present their empirical evaluation on four reference data sets: dependency bigrams from the manually annotated Prague Dependency Treebank, surface bigrams from the same source, instances of the previous from the Czech National Corpus provided with automatically assigned lemmas and part~of-speech tags, and distance verb-noun bigrams from the automatically part-of-speech tagged Swedish Parole Corpus. Collocation candidates in the reference data sets were manually annotated and identified as collocations and non-collocations. The evaluation scheme is based on measuring the quality of ranking collocation candidates according to their chance to form collocations. The methods are compared by precision-recall curves and mean average precision scores adopted from the field of information retrieval. Tests of statistical significance were also performed. Further, we study the possibility of combining lexical association measures and present empirical results of several...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleLexical Association Measures Collocation Extractionen_US
dc.typerigorózní prácecs_CZ
dcterms.created2010
dcterms.dateAccepted2010-01-21
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId81946
dc.title.translatedLexical Association Measures Collocation Extractioncs_CZ
dc.identifier.aleph001117146
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineData Engineeringen_US
thesis.degree.disciplineDatové inženýrstvícs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDatové inženýrstvícs_CZ
uk.degree-discipline.enData Engineeringen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csLexical Association Measures:Collocation Extraction Pavel Pecina Abstract of Doctoral Thesis This thesis is devoted to an empirical study of lexical association measures and their application for collocation extraction. We focus on two-word (bigram) collocations only. We compiled a comprehensive inventory of 82 lexical association measures and present their empirical evaluation on four reference data sets: dependency bigrams from the manually annotated Prague Dependency Treebank, surface bigrams from the same source, instances of the previous from the Czech National Corpus provided with automatically assigned lemmas and part~of-speech tags, and distance verb-noun bigrams from the automatically part-of-speech tagged Swedish Parole Corpus. Collocation candidates in the reference data sets were manually annotated and identified as collocations and non-collocations. The evaluation scheme is based on measuring the quality of ranking collocation candidates according to their chance to form collocations. The methods are compared by precision-recall curves and mean average precision scores adopted from the field of information retrieval. Tests of statistical significance were also performed. Further, we study the possibility of combining lexical association measures and present empirical results of several...cs_CZ
uk.abstract.enLexical Association Measures: Collocation Extraction Pavel Pecina Abstract of Doctoral Thesis This thesis is devoted to an empirical study of lexical association measures and their application for collocation extraction. We focus on two-word (bigram) collocations only. We compiled a comprehensive inventory of 82 lexical association measures and present their empirical evaluation on four reference data sets: dependency bigrams from the manually annotated Prague Dependency Trcebank, surface bigrams from the same source, instances of the previous from the Czech National Corpus provided with automatically assigned lemmas and part-of-speech tags, and distance verb-noun bigrams from the automatically part-of-spcech tagged Swedish Parole Corpus. Collocation candidates in the reference data sets were manually annotated and identified as collocations and non-collocations. The evaluation scheme is based on measuring the quality of ranking collocation candidates according to their chance to form collocations. The methods are compared by precision-recall curves and mean average precision scores adopted from the field of information retrieval. Tests of statistical significance were also performed. Further, we study the possibility of combining lexical association measures and present empirical results of several...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990011171460106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV