Show simple item record

Asymptotické chování řešení v problémech matematické teorie tekutin
dc.contributor.advisorFeireisl, Eduard
dc.creatorKukučka, Peter
dc.date.accessioned2021-01-15T17:40:40Z
dc.date.available2021-01-15T17:40:40Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/23400
dc.description.abstractThis thesis contains a set of articles concerned with flow of a viscous, compressible and heat conducting fluids in several kinds of domains. The first part is devoted to the existence of weak solutions in domains that may contain cusps. Next chapter is focused on the asymptotic limit of the equations of magnetohydrodynamics consisting of Navier-Stokes-Fourier system describing the evolution of fluid coupled with Maxwell equations governing the behavior of magnetic field with the low Mach and Alfv'en number. At the end of the thesis, we study the asymptotic limit passage of the Navier-Stokes-Fourier system under the strong stratification defined in unbounded domain. Special attention is paid to the acoustic waves which analysis is based on local energy decay.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleAsymptotic Behavior of Solutions in Problems of the Mathematical Theory of Fluidsen_US
dc.typedizertační prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-12-11
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId43247
dc.title.translatedAsymptotické chování řešení v problémech matematické teorie tekutincs_CZ
dc.contributor.refereeMálek, Josef
dc.contributor.refereeNovotný, Antonín
dc.identifier.aleph001189738
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enThis thesis contains a set of articles concerned with flow of a viscous, compressible and heat conducting fluids in several kinds of domains. The first part is devoted to the existence of weak solutions in domains that may contain cusps. Next chapter is focused on the asymptotic limit of the equations of magnetohydrodynamics consisting of Navier-Stokes-Fourier system describing the evolution of fluid coupled with Maxwell equations governing the behavior of magnetic field with the low Mach and Alfv'en number. At the end of the thesis, we study the asymptotic limit passage of the Navier-Stokes-Fourier system under the strong stratification defined in unbounded domain. Special attention is paid to the acoustic waves which analysis is based on local energy decay.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameMatematický ústav AV ČR, v.v.i.cs
dc.identifier.lisID990011897380106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV