Show simple item record

Annuities under random interest rates
Anuity s náhodnými úrokovými mírami
dc.contributor.advisorCipra, Tomáš
dc.creatorSviteková, Zuzana
dc.date.accessioned2017-04-18T11:14:49Z
dc.date.available2017-04-18T11:14:49Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/20798
dc.description.abstractThe thesis describes accumulated values of annuities with yearly payments under independent random interest rates. The thesis focuses on general annuities with payments varying in arithmetic and geometric progressions which are important varying annuities. Mean and variance formulae of the final values of the annuities are derived in the thesis. In the beginning (chapter 2) the formulae of the final values of the annuities under xed rates of interest are shown. Chapter 3 is the main part of the thesis. The mean and variance formulae of the final values of the annuities under random rates of interest are proofed here. The thesis is based on the article [4] and [1]. It is especially focused on the article [1] which corrects main outcome of the article [4]. In the end (chapter 4) special cases of the annuites with numerical and graphical solutions are shown.en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleAnuity s náhodnými úrokovými míramisk_SK
dc.typediplomová prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-05-26
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47550
dc.title.translatedAnnuities under random interest ratesen_US
dc.title.translatedAnuity s náhodnými úrokovými míramics_CZ
dc.contributor.refereeMazurová, Lucie
dc.identifier.aleph001119703
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineFinanční a pojistná matematikacs_CZ
thesis.degree.disciplineFinancial and insurance mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční a pojistná matematikacs_CZ
uk.degree-discipline.enFinancial and insurance mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.enThe thesis describes accumulated values of annuities with yearly payments under independent random interest rates. The thesis focuses on general annuities with payments varying in arithmetic and geometric progressions which are important varying annuities. Mean and variance formulae of the final values of the annuities are derived in the thesis. In the beginning (chapter 2) the formulae of the final values of the annuities under xed rates of interest are shown. Chapter 3 is the main part of the thesis. The mean and variance formulae of the final values of the annuities under random rates of interest are proofed here. The thesis is based on the article [4] and [1]. It is especially focused on the article [1] which corrects main outcome of the article [4]. In the end (chapter 4) special cases of the annuites with numerical and graphical solutions are shown.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV