Search
Now showing items 1-10 of 388
Vlastnosti Poulsenových simplexů
Properties of Poulsen simplices
diploma thesis (DEFENDED)
Advisor: Spurný, Jiří
Date Issued: 2012
Date of defense: 18. 09. 2012
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Název práce: Vlastnosti Poulsenových simplexů Autor: Zdeněk Jaroň Katedra: Katedra matematické analýzy Vedoucí diplomové práce: Doc. RNDr. Jiří Spurný, Ph.D. Abstrakt: V předložené práci zkoumáme zobecnění konceptu Poulsenova ...
Title: Properties of Poulsen simplices Author: Zdeněk Jaroň Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Jiří Spurný, Ph.D. Abstract: In the present thesis, we study a generalisation of concept ...
Title: Properties of Poulsen simplices Author: Zdeněk Jaroň Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Jiří Spurný, Ph.D. Abstract: In the present thesis, we study a generalisation of concept ...
Besicovitchova množina
Besicovitch set
bachelor thesis (DEFENDED)
Advisor: Zelený, Miroslav
Date Issued: 2009
Date of defense: 11. 09. 2009
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract not found
Rozšiřování zobrazení do Banachových prostorů
Extension of mappings into Banach spaces
diploma thesis (DEFENDED)
Advisor: Hušek, Miroslav
Date Issued: 2010
Date of defense: 02. 06. 2010
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Diplomová práce se zabývá rozšiřováním spojitých a stejnoměrně spojitých zobrazení. Představuje přístupy od Lebesguea a Tietzeho v metrických prostorech přes Urysohnovu větu na normálních topologických prostorech, Katětovovu ...
This diploma thesis deals with extending continuous and uniformly continuous mappings. It studies Lebesgue's and Tietze's work in metric spaces through Urysohn's theorem in normal topological spaces, Kat etovs' papers about ...
This diploma thesis deals with extending continuous and uniformly continuous mappings. It studies Lebesgue's and Tietze's work in metric spaces through Urysohn's theorem in normal topological spaces, Kat etovs' papers about ...
Degenerate Parabolic Stochastic Partial Differential Equations
Degenerované parabolické stochastické parciální diferenciální rovnice
rigorous thesis (RECOGNIZED)
Date Issued: 2014
Date of defense: 18. 06. 2014
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Tato disertace se zaměřuje na několik problémů, které vy- vstávají při studiu degenerovaných parabolických stochastických parcialních diferenciálních rovnic, stochastických hyperbolických zákonů zachování a stochastických ...
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are ...
In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyper- bolic conservation laws and SDEs with continues coefficients. In the first part, we are ...
Nerovnosti pro integrální operátory
Nerovnosti pro integrální operátory
diploma thesis (DEFENDED)
Advisor: Pick, Luboš
Date Issued: 2011
Date of defense: 08. 09. 2011
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Předložená práce obsahuje shrnutí dosud známých výsledků o operá- torových nerovnostech typu " good λ", " better good λ" a " rearranged good λ" na prostorech funkcí nad Eukleidovským prostorem s Lebesgueovou mírou a jejich ...
The presented work contains a survey of the so far known results about the operator inequalities of the type "good λ", "better good λ" and "rearranged good λ" on the function spaces over the Euclidean space with the Lebesgue ...
The presented work contains a survey of the so far known results about the operator inequalities of the type "good λ", "better good λ" and "rearranged good λ" on the function spaces over the Euclidean space with the Lebesgue ...
Contour methods in the mathematical theory of phase transitions
Konturové metody v matematické teorii fázových přechodů
diploma thesis (DEFENDED)
Advisor: Zahradník, Miloš
Date Issued: 2020
Date of defense: 05. 02. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Title: Contour methods in the mathematical theory of phase transitions Author: Oliver Nagy Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Miloš Zahradník, CSc., Department of Mathematical Analysis ...
Název: Konturové metody v matematické teorii fázových přechodů Autor: Oliver Nagy Katedra: Katedra matematické analýzy Vedoucí: doc. RNDr. Miloš Zahradník, CSc., Katedra matematické analýzy Abstrakt: Práce se zaobírá třemi ...
Název: Konturové metody v matematické teorii fázových přechodů Autor: Oliver Nagy Katedra: Katedra matematické analýzy Vedoucí: doc. RNDr. Miloš Zahradník, CSc., Katedra matematické analýzy Abstrakt: Práce se zaobírá třemi ...
Volumes of unit balls of Lorentz spaces
Objemy jednotkových koulí Lorentzových prostorů
rigorous thesis (RECOGNIZED)
Advisor: Vybíral, Jan
Date Issued: 2022
Date of defense: 26. 04. 2022
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: This thesis studies the volume of the unit ball of finite-dimensional Lorentz sequence spaces p,q n . Lorentz spaces are a generalisation of Lebesgue spaces with a quasinorm described by two parameters 0 < p, q ≤ ∞. The ...
Tato práce se zabývá objemem jednotkové koule v konečnědimenzionálních Lorentzových prosto- rech p,q n . Lorentzovy prostory jsou zobecnění Lebesguových prostorů s kvazinormou popsanou dvěma parametry 0 < p, q ≤ ∞. Pro ...
Tato práce se zabývá objemem jednotkové koule v konečnědimenzionálních Lorentzových prosto- rech p,q n . Lorentzovy prostory jsou zobecnění Lebesguových prostorů s kvazinormou popsanou dvěma parametry 0 < p, q ≤ ∞. Pro ...
Perfektní funkce první třídy
Perfect functions of the first Baire class
bachelor thesis (DEFENDED)
Advisor: Spurný, Jiří
Date Issued: 2012
Date of defense: 11. 09. 2012
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Široká třída problémů v matematické analýze se dá popsat jako hledání vlastností V takových, že pro každé F z předem daného systému zobrazení F mezi prostory K a L má libovolná reálná funkce na prostoru L vlastnost V právě ...
A wide class of problems in mathematical analysis can be described as searching for properties P such that for each F from a given system of mappings F between spaces K and L an arbitrary real valued function on L has the ...
A wide class of problems in mathematical analysis can be described as searching for properties P such that for each F from a given system of mappings F between spaces K and L an arbitrary real valued function on L has the ...
Maticový kalkulus
Matrix calculus
bachelor thesis (DEFENDED)
Advisor: Pražák, Dalibor
Date Issued: 2013
Date of defense: 26. 06. 2013
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Název práce: Maticový kalkulus Autor: Lenka Pekárková Katedra: Katedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Dalibor Pražák, Ph.D., Katedra matema- tické analýzy Abstrakt: Tato bakalářská práce se zabývá ...
Title: Matrix calculus Author: Lenka Pekárková Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Dalibor Pražák, Ph.D., Department of Mathematical Analysis Abstract: This bachelor thesis deals with the ...
Title: Matrix calculus Author: Lenka Pekárková Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Dalibor Pražák, Ph.D., Department of Mathematical Analysis Abstract: This bachelor thesis deals with the ...
Eliptické systémy rovnic s anizotropním potenciálem: existence a regularita řešení
Elliptic systems with anisotropic potential: existence and regularity of solutions
diploma thesis (DEFENDED)
Advisor: Kaplický, Petr
Date Issued: 2014
Date of defense: 16. 09. 2014
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Stručně shrneme dosavadní výsledky v teorii regularity minimizérů eliptických va- riačních funkcionálů. Předvedeme důkaz existence a regularity takového funkcionálu za předpokladu kvazikonvexity a izotropních růstových ...
We briefly summarize existing result in theory of minimizers of elliptic variational functionals. We introduce proof of existence and regularity such functional under assumpti- ons of quaziconvexity and izotrophic growth ...
We briefly summarize existing result in theory of minimizers of elliptic variational functionals. We introduce proof of existence and regularity such functional under assumpti- ons of quaziconvexity and izotrophic growth ...