Search
Now showing items 1-6 of 6
Semi-supervised deep learning in sequence labeling
Semisupervizované hluboké učení v označování sekvencí
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Smoothness of Functions Learned by Neural Networks
Hladkost funkcí naučených neuronovými sítěmi
bachelor thesis (DEFENDED)
Advisor: Musil, Tomáš
Date Issued: 2020
Date of defense: 07. 07. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Modern neural networks can easily fit their training set perfectly. Surprisingly, they generalize well despite being "overfit" in this way, defying the bias-variance trade-off. A prevalent explanation is that stochastic ...
Adversarial Examples in Machine Learning
Matoucí vzory ve strojovém učení
diploma thesis (DEFENDED)
Advisor: Pilát, Martin
Date Issued: 2018
Date of defense: 14. 06. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep neural networks have been recently achieving high accuracy on many important tasks, most notably image classification. However, these models are not robust to slightly perturbed inputs known as adversarial examples. ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Predikce sekundární struktury proteinu pomocí hlubokých neuronových sítí
Protein secondary structure prediction using deep neural networks
diploma thesis (DEFENDED)
Advisor: Hoksza, David
Date Issued: 2017
Date of defense: 07. 09. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Determination of protein structure in space is a crucial part of protein function analysis. But structure determination is an expensive and time consuming pro- cess, therefore structure prediction model raised on popularity. ...
Znalost struktury, kterou proteiny zaujímají v prostoru, je klíčovým faktorem při studiu jejich funkce. Experimentální zjištění struktury je ale nákladné a časově náročné, proto jsou velmi populární predikční modely ...
Znalost struktury, kterou proteiny zaujímají v prostoru, je klíčovým faktorem při studiu jejich funkce. Experimentální zjištění struktury je ale nákladné a časově náročné, proto jsou velmi populární predikční modely ...
Analysing and Optimizing GPU Kernels with Machine Learning
Analýza a optimalizace GPU kernelů pomocí strojového učení
diploma thesis (DEFENDED)
Advisor: Kruliš, Martin
Date Issued: 2020
Date of defense: 01. 07. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Graphics processing units (GPUs) were originally used solely for the purpose of graph- ics rendering. This changed with the introduction of technologies like CUDA that enabled to use graphics processors as any other computing ...
Grafické výpočetní jednotky (GPU) byly původně používány výhradně pro účely grafického vykreslování. To se změnilo zavedením technologií jako je CUDA, které umožnily použití grafických procesorů jako kterýchkoliv jiných ...
Grafické výpočetní jednotky (GPU) byly původně používány výhradně pro účely grafického vykreslování. To se změnilo zavedením technologií jako je CUDA, které umožnily použití grafických procesorů jako kterýchkoliv jiných ...
Active learning for Bayesian neural networks in image classification
Aktivní učení Bayesovských neuronových sítí pro klasifikaci obrazu
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2020
Date of defense: 14. 09. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: V posledných rokoch dosahujú zložité neurónové siete špičkové výsledky v klasifikácií obrazu. Trénovanie takýchto modelov však vyžaduje veľké množstvo označkovaných dát. Kým neoznačkované obrázky sú často dostupné vo ve ...
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often ...
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often ...