Search
Now showing items 1-10 of 19
Maximizing Computational Power by Neuroevolution
Maximalizace výpočetní síly neuroevolucí
diploma thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2016
Date of defense: 12. 09. 2016
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Echo state networks jsou speciálním typem rekurentních neuronových sítí. Nedávný výzkum ukázal, že výkon echo state networks je nejvyšší na přechodu mezi uspořádaným a chaotickým režimem, takzvané hranici chaosu. Tato práce ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Rozpoznávání znaků v digitalizovaných matematických výrazech
Recongition of symbols in digitalized mathematical expressions
bachelor thesis (DEFENDED)
Advisor: Valla, Tomáš
Date Issued: 2011
Date of defense: 07. 09. 2011
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Cílem bakalářské práce je nalezení vhodných metod a algoritmů pro segmentaci textu a rozpoznávání symbolů pomocí umělých neuronových sítí. Nejdříve se práce věnuje základním principům umělého neuronu a umělých neuronových ...
This bachelor thesis focuses on finding suitable methods and algorithms for text segmentation and character recognition using artificial neural networks. Firstly, the thesis covers basic principles of artificial neuron and ...
This bachelor thesis focuses on finding suitable methods and algorithms for text segmentation and character recognition using artificial neural networks. Firstly, the thesis covers basic principles of artificial neuron and ...
Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks
Inteligentní návrh interiérů - Kompatibilita stylu 3D modelů nábytku pomocí neuronových sítí
diploma thesis (DEFENDED)
Advisor: Mirbauer, Martin
Date Issued: 2020
Date of defense: 03. 02. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Thesis title: Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks Author: Yuu Sakaguchi Abstract: Analysis of 3D shapes is a challenging task especially when it comes to measuring ...
Semi-supervised deep learning in sequence labeling
Semisupervizované hluboké učení v označování sekvencí
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Online training of deep neural networks for classification
Online trénování hlubokých neuronových sítí pro klasifikaci
diploma thesis (DEFENDED)
Advisor: Holeňa, Martin
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep learning is usually applied to static datasets. If used for classification based on data streams, it is not easy to take into account a non-stationarity. This thesis presents work in progress on a new method for online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Object recognition using 3D convolutional neural networks
Rozpoznávání objektů pomocí 3D konvolučních neuronových sítí
bachelor thesis (DEFENDED)
Advisor: Lokoč, Jakub
Date Issued: 2017
Date of defense: 20. 06. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Název: Rozpoznávání objektů pomocí 3D konvolučních neuronových sítí Autor: Jaroslav Moravec Katedra: Katedra softwarového inženýrství Školitel: RNDr. Jakub Lokoč, Ph.D., Katedra softwarového inženýrství Abstrakt: S rychlým ...
Title: Object recognition using 3D convolutional neural networks Author: Jaroslav Moravec Department: Department of Software Engineering Supervisor: RNDr. Jakub Lokoč, Ph.D., Department of Software Engineering Abstract: ...
Title: Object recognition using 3D convolutional neural networks Author: Jaroslav Moravec Department: Department of Software Engineering Supervisor: RNDr. Jakub Lokoč, Ph.D., Department of Software Engineering Abstract: ...
Smoothness of Functions Learned by Neural Networks
Hladkost funkcí naučených neuronovými sítěmi
bachelor thesis (DEFENDED)
Advisor: Musil, Tomáš
Date Issued: 2020
Date of defense: 07. 07. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Modern neural networks can easily fit their training set perfectly. Surprisingly, they generalize well despite being "overfit" in this way, defying the bias-variance trade-off. A prevalent explanation is that stochastic ...
Adversarial Examples in Machine Learning
Matoucí vzory ve strojovém učení
diploma thesis (DEFENDED)
Advisor: Pilát, Martin
Date Issued: 2018
Date of defense: 14. 06. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep neural networks have been recently achieving high accuracy on many important tasks, most notably image classification. However, these models are not robust to slightly perturbed inputs known as adversarial examples. ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Echo state siete a ich využitie na predpovedanie časových radov
Echo state networks and their application in time series prediction
Echo state sítě a jejich využití na předpovídání časových řad
bachelor thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2019
Date of defense: 14. 02. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Recurrent neural networks (RNN) enable to model dynamical sys- tems with variable input length. Their disadvantage is in inherently difficult trai- ning which means adjusting weights of connections between neurons connected ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...
Predikce sekundární struktury proteinu pomocí hlubokých neuronových sítí
Protein secondary structure prediction using deep neural networks
diploma thesis (DEFENDED)
Advisor: Hoksza, David
Date Issued: 2017
Date of defense: 07. 09. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Determination of protein structure in space is a crucial part of protein function analysis. But structure determination is an expensive and time consuming pro- cess, therefore structure prediction model raised on popularity. ...
Znalost struktury, kterou proteiny zaujímají v prostoru, je klíčovým faktorem při studiu jejich funkce. Experimentální zjištění struktury je ale nákladné a časově náročné, proto jsou velmi populární predikční modely ...
Znalost struktury, kterou proteiny zaujímají v prostoru, je klíčovým faktorem při studiu jejich funkce. Experimentální zjištění struktury je ale nákladné a časově náročné, proto jsou velmi populární predikční modely ...