Search
Now showing items 1-2 of 2
Semi-supervised deep learning in sequence labeling
Semisupervizované hluboké učení v označování sekvencí
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Online training of deep neural networks for classification
Online trénování hlubokých neuronových sítí pro klasifikaci
diploma thesis (DEFENDED)
Advisor: Holeňa, Martin
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep learning is usually applied to static datasets. If used for classification based on data streams, it is not easy to take into account a non-stationarity. This thesis presents work in progress on a new method for online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...