Search
Now showing items 1-3 of 3
Detection and analysis of polychronous groups emerging in spiking neural network models.
Detekce a analýza polychronních skupin neuronů v spikujících sítích.
diploma thesis (DEFENDED)
Advisor: Brom, Cyril
Date Issued: 2018
Date of defense: 29. 01. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Jak biologické struktury neuronových sítí reprezentují informace zůstává otevřenou otázkou. Stále více důkazů však naznačuje, že jsou neuronové sítě schopné vykazovat přesné a opakovatelné vzorce chování. Jednou z teorií, ...
How is information represented in real neural networks? Experimental results continue to provide evidence for presence of spiking patterns in network activity. The concept of polychronous groups attempts to explain these ...
How is information represented in real neural networks? Experimental results continue to provide evidence for presence of spiking patterns in network activity. The concept of polychronous groups attempts to explain these ...
Klasifikace na množinách bodů v 3D
Klasifikace na množinách bodů v 3D
diploma thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2018
Date of defense: 13. 09. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Increasing interest for classification of 3D geometrical data has led to discov- ery of PointNet, which is a neural network architecture capable of processing un- ordered point sets. This thesis explores several methods ...
Rostoucí zájem o klasifikaci 3D geometrických dat vedl k objevu PointNet, což je neuronová síť schopná přímého zpracování neuspořádaných množin bodů. Tato práce prozkoumává několik metod využítí obvyklých bodových příznaků ...
Rostoucí zájem o klasifikaci 3D geometrických dat vedl k objevu PointNet, což je neuronová síť schopná přímého zpracování neuspořádaných množin bodů. Tato práce prozkoumává několik metod využítí obvyklých bodových příznaků ...
Echo state siete a ich využitie na predpovedanie časových radov
Echo state networks and their application in time series prediction
Echo state siete a ich využitie na predpovedanie časových radov
bachelor thesis (NOT DEFENDED)
Advisor: Mráz, František
Date Issued: 2018
Date of defense: 06. 09. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Recurrent neural networks (RNN) enable to model dynamical sys- tems with variable input length. Their disadvantage is in inherently difficult trai- ning which means adjusting weights of connections between neurons connected ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...