Search
Now showing items 1-10 of 34
Maximizing Computational Power by Neuroevolution
Maximalizace výpočetní síly neuroevolucí
diploma thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2016
Date of defense: 12. 09. 2016
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Echo state networks jsou speciálním typem rekurentních neuronových sítí. Nedávný výzkum ukázal, že výkon echo state networks je nejvyšší na přechodu mezi uspořádaným a chaotickým režimem, takzvané hranici chaosu. Tato práce ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Neural networks for automatic speaker, language, and sex identification
Použití rekurentních neuronových sítí pro automatické rozpoznávání řečníka, jazyka a pohlaví
diploma thesis (DEFENDED)
Advisor: Jurčíček, Filip
Date Issued: 2016
Date of defense: 03. 02. 2016
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Název: Neuronové sítě pro automatické rozpoznávání řečníka, jazyka a pohlaví Autorka: Bich-Ngoc Do Katedra: Ústav formální a aplikované lingvistiky Vedoucí práce: Ing. Mgr. Filip Jurek, Ph.D., Ústav formální a aplikované ...
Title: Neural networks for automatic speaker, language, and sex identifica- tion Author: Bich-Ngoc Do Department: Institute of Formal and Applied Linguistics Supervisor: Ing. Mgr. Filip Jurek, Ph.D., Institute of Formal ...
Title: Neural networks for automatic speaker, language, and sex identifica- tion Author: Bich-Ngoc Do Department: Institute of Formal and Applied Linguistics Supervisor: Ing. Mgr. Filip Jurek, Ph.D., Institute of Formal ...
Evolution and Learning of Virtual Robots
Evoluce a učení virtuálních robotů
dissertation thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2016
Date of defense: 26. 09. 2016
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Title: Evolution and Learning of Virtual Robots Author: RNDr. Peter Krčah Department: Department of Software and Computer Science Education Supervisor: RNDr. František Mráz, CSc. Abstract: Evolutionary robotics uses ...
Název práce: Evoluce a učení virtuálních robotů Autor: RNDr. Peter Krčah Katedra: Katedra softwaru a výuky informatiky Vedoucí disertační práce: RNDr. František Mráz, CSc. Abstrakt: Evoluční robotika využívá evoluční ...
Název práce: Evoluce a učení virtuálních robotů Autor: RNDr. Peter Krčah Katedra: Katedra softwaru a výuky informatiky Vedoucí disertační práce: RNDr. František Mráz, CSc. Abstrakt: Evoluční robotika využívá evoluční ...
Forced Alignment via Neural Networks
Forced alignment pomocí neuronových sítí
diploma thesis (DEFENDED)
Advisor: Kofroň, Jan
Date Issued: 2020
Date of defense: 16. 09. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Sledování videí s titulky v původním jazyce je jedním z nejúčinnějších způsobů výuky cizího jazyka. Zvýrazňování slov v okamžiku jejich vyslovení pomáhá synchronizovat vizuální a sluchové vnímání a zvyšuje efektivitu učení. ...
Watching videos with subtitles in the original language is one of the most effective ways of learning a foreign language. Highlighting words at the moment they are pronounced helps to synchronize visual and auditory ...
Watching videos with subtitles in the original language is one of the most effective ways of learning a foreign language. Highlighting words at the moment they are pronounced helps to synchronize visual and auditory ...
Detection and analysis of polychronous groups emerging in spiking neural network models.
Detekce a analýza polychronních skupin neuronů v spikujících sítích.
diploma thesis (DEFENDED)
Advisor: Brom, Cyril
Date Issued: 2018
Date of defense: 29. 01. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Jak biologické struktury neuronových sítí reprezentují informace zůstává otevřenou otázkou. Stále více důkazů však naznačuje, že jsou neuronové sítě schopné vykazovat přesné a opakovatelné vzorce chování. Jednou z teorií, ...
How is information represented in real neural networks? Experimental results continue to provide evidence for presence of spiking patterns in network activity. The concept of polychronous groups attempts to explain these ...
How is information represented in real neural networks? Experimental results continue to provide evidence for presence of spiking patterns in network activity. The concept of polychronous groups attempts to explain these ...
Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks
Inteligentní návrh interiérů - Kompatibilita stylu 3D modelů nábytku pomocí neuronových sítí
diploma thesis (DEFENDED)
Advisor: Mirbauer, Martin
Date Issued: 2020
Date of defense: 03. 02. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Thesis title: Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks Author: Yuu Sakaguchi Abstract: Analysis of 3D shapes is a challenging task especially when it comes to measuring ...
Semi-supervised deep learning in sequence labeling
Semisupervizované hluboké učení v označování sekvencí
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Klasifikace 3D objektů pomocí neuronových sítí
3D object classification using neural networks
diploma thesis (DEFENDED)
Advisor: Křivánek, Jaroslav
Date Issued: 2019
Date of defense: 10. 06. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Klasifikace 3D objektů pomocí neuronových sítí Bc. Miroslav Krabec Klasifikace 3D objektů se setkává s velkým zájmem v oblasti umělé in- teligence. Existuje mnoho různých přístupů využívajících umělé neuronové sítě k řešení ...
3D Object Classification Using Neural Networks Bc. Miroslav Krabec Classification of 3D objects is of great interest in the field of artificial intelligence. There are numerous approaches using artificial neural networks ...
3D Object Classification Using Neural Networks Bc. Miroslav Krabec Classification of 3D objects is of great interest in the field of artificial intelligence. There are numerous approaches using artificial neural networks ...
Online training of deep neural networks for classification
Online trénování hlubokých neuronových sítí pro klasifikaci
diploma thesis (DEFENDED)
Advisor: Holeňa, Martin
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep learning is usually applied to static datasets. If used for classification based on data streams, it is not easy to take into account a non-stationarity. This thesis presents work in progress on a new method for online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Neural Language Models with Morphology for Machine Translation
Neuronové jazykové modely zohledňující morfologii pro strojový překlad
diploma thesis (DEFENDED)
Advisor: Bojar, Ondřej
Date Issued: 2017
Date of defense: 07. 09. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Language models play an important role in many natural language processing tasks. In this thesis, we focus on language models built on artificial neural net- works. We examine the possibilities of using morphological ...
Jazykové modely hrají důležitou roli v mnoha oblastech zpracování přirozeného jazyka. V této práci se zaměřujeme na jazykové modely tvořené umělou neuronovou sítí. Zkoumáme možnosti použití morfologické anotace v těchto ...
Jazykové modely hrají důležitou roli v mnoha oblastech zpracování přirozeného jazyka. V této práci se zaměřujeme na jazykové modely tvořené umělou neuronovou sítí. Zkoumáme možnosti použití morfologické anotace v těchto ...