Search
Now showing items 1-7 of 7
Semi-supervised deep learning in sequence labeling
Semisupervizované hluboké učení v označování sekvencí
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Označování sekvencí ve strojovém učení je typ problému, který zahrnuje při- řazování označení jednotlivým členům sekvence. Pro tento typ problému dosáhlo hluboké učení dobrého výkonu. Jedna z nevýhod tohoto přístupu je ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Sequence labeling is a type of machine learning problem that involves as- signing a label to each sequence member. Deep learning has shown good per- formance for this problem. However, one disadvantage of this approach is ...
Online training of deep neural networks for classification
Online trénování hlubokých neuronových sítí pro klasifikaci
diploma thesis (DEFENDED)
Advisor: Holeňa, Martin
Date Issued: 2019
Date of defense: 16. 09. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep learning is usually applied to static datasets. If used for classification based on data streams, it is not easy to take into account a non-stationarity. This thesis presents work in progress on a new method for online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Hluboké učení je obvykle používáno se statickými datasety. Když je ale použito pro klasifikaci dat z datového toku, není jednoduché vzít v úvahu nestacionárnost. Tato diplomová práce prezentuje práci na nové metodě online ...
Adversarial Examples in Machine Learning
Matoucí vzory ve strojovém učení
diploma thesis (DEFENDED)
Advisor: Pilát, Martin
Date Issued: 2018
Date of defense: 14. 06. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Deep neural networks have been recently achieving high accuracy on many important tasks, most notably image classification. However, these models are not robust to slightly perturbed inputs known as adversarial examples. ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Hluboké neuronové sítě v poslední době dosahují vysoké úspěšnosti na mnoha úlohách, zejména klasifikaci obrázků. Tyto modely jsou ovšem snadno ovlivni- telné lehce pozměněnými vstupy zvanými matoucí vzory. Matoucí vzory ...
Obecná umělá inteligence pro hraní her
General Artificial Intelligence for Game Playing
diploma thesis (DEFENDED)
Advisor: Pilát, Martin
Date Issued: 2017
Date of defense: 07. 09. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Game playing is a relatively interesting task in the field of artificial intelligence in these days. The master thesis deals with general artificial intelligence which is capable of playing selected simple games based on ...
Hraní her je v současné době poměrně zajímavý problém na poli umělé inteli- gence. V diplomové práci se zabýváme tvorbou obecné umělé inteligence, která je schopna hrát vybrané jednoduché počítačové hry na základě informací, ...
Hraní her je v současné době poměrně zajímavý problém na poli umělé inteli- gence. V diplomové práci se zabýváme tvorbou obecné umělé inteligence, která je schopna hrát vybrané jednoduché počítačové hry na základě informací, ...
Using reinforcement learning to learn how to play text-based games
Použití zpětnovazebního učení pro hraní textových her
diploma thesis (DEFENDED)
Advisor: Kadlec, Rudolf
Date Issued: 2017
Date of defense: 07. 09. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: The ability to learn optimal control policies in systems where action space is defined by sentences in natural language would allow many interesting real-world applications such as automatic optimisation of dialogue systems. ...
Schopnost naučit se optimálnímu chování v prostředích, kde jsou stavy i akce vyjádřeny v přirozeném jazyce, by se dala aplikovat na řadu skutečných problémů, jako je optimalizace dialogových systémů. Pro tento učící problém ...
Schopnost naučit se optimálnímu chování v prostředích, kde jsou stavy i akce vyjádřeny v přirozeném jazyce, by se dala aplikovat na řadu skutečných problémů, jako je optimalizace dialogových systémů. Pro tento učící problém ...
Active learning for Bayesian neural networks in image classification
Aktivní učení Bayesovských neuronových sítí pro klasifikaci obrazu
diploma thesis (DEFENDED)
Advisor: Šabata, Tomáš
Date Issued: 2020
Date of defense: 14. 09. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: V posledných rokoch dosahujú zložité neurónové siete špičkové výsledky v klasifikácií obrazu. Trénovanie takýchto modelov však vyžaduje veľké množstvo označkovaných dát. Kým neoznačkované obrázky sú často dostupné vo ve ...
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often ...
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often ...
Evolutionary Algorithms for Data Transformation
Transformace dat pomocí evolučních algoritmů
diploma thesis (DEFENDED)
Advisor: Pilát, Martin
Date Issued: 2017
Date of defense: 07. 06. 2017
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: V této práci jsme navrhli novou metodu pro supervised redukci dimenze, která se učí váhy neuronové sítě pomocí evolučního algoritmu CMA-ES, optimalizujícího úspěšnost k-NN klasifikátoru. Když v dané neuronové síti nejsou ...
In this work, we propose a novel method for a supervised dimensionality reduc- tion, which learns weights of a neural network using an evolutionary algorithm, CMA-ES, optimising the success rate of the k-NN classifier. If ...
In this work, we propose a novel method for a supervised dimensionality reduc- tion, which learns weights of a neural network using an evolutionary algorithm, CMA-ES, optimising the success rate of the k-NN classifier. If ...