Search
Now showing items 1-4 of 4
Maximizing Computational Power by Neuroevolution
Maximalizace výpočetní síly neuroevolucí
diploma thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2016
Date of defense: 12. 09. 2016
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Echo state networks jsou speciálním typem rekurentních neuronových sítí. Nedávný výzkum ukázal, že výkon echo state networks je nejvyšší na přechodu mezi uspořádaným a chaotickým režimem, takzvané hranici chaosu. Tato práce ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called ...
Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks
Inteligentní návrh interiérů - Kompatibilita stylu 3D modelů nábytku pomocí neuronových sítí
diploma thesis (DEFENDED)
Advisor: Mirbauer, Martin
Date Issued: 2020
Date of defense: 03. 02. 2020
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Thesis title: Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks Author: Yuu Sakaguchi Abstract: Analysis of 3D shapes is a challenging task especially when it comes to measuring ...
Echo state siete a ich využitie na predpovedanie časových radov
Echo state networks and their application in time series prediction
Echo state sítě a jejich využití na předpovídání časových řad
bachelor thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2019
Date of defense: 14. 02. 2019
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Recurrent neural networks (RNN) enable to model dynamical sys- tems with variable input length. Their disadvantage is in inherently difficult trai- ning which means adjusting weights of connections between neurons connected ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...
Rekurentné neurónové siete (RNN) umožňujú modelovať dynamické systémy s premenlivou dĺžkou vstupu. Ich nevýhoda je v náročnom učení, teda ťažkom nastavovaní váh neurónov, ktoré sú v sieti spojené. Echo state siete (ESN) ...
Klasifikace na množinách bodů v 3D
Klasifikace na množinách bodů v 3D
diploma thesis (DEFENDED)
Advisor: Mráz, František
Date Issued: 2018
Date of defense: 13. 09. 2018
Faculty / Institute: Matematicko-fyzikální fakulta / Faculty of Mathematics and Physics
Abstract: Increasing interest for classification of 3D geometrical data has led to discov- ery of PointNet, which is a neural network architecture capable of processing un- ordered point sets. This thesis explores several methods ...
Rostoucí zájem o klasifikaci 3D geometrických dat vedl k objevu PointNet, což je neuronová síť schopná přímého zpracování neuspořádaných množin bodů. Tato práce prozkoumává několik metod využítí obvyklých bodových příznaků ...
Rostoucí zájem o klasifikaci 3D geometrických dat vedl k objevu PointNet, což je neuronová síť schopná přímého zpracování neuspořádaných množin bodů. Tato práce prozkoumává několik metod využítí obvyklých bodových příznaků ...