Show simple item record

Deep learning for the solution of differential equations
dc.contributor.advisorCongreve, Scott
dc.creatorVais, Matěj
dc.date.accessioned2023-11-07T01:32:46Z
dc.date.available2023-11-07T01:32:46Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/185325
dc.description.abstractNeural networks are becoming an ever more prominent method in the field of differen- tial equations. Their use is embodied in the concept of physics-informed neural network (PINN), which combines a traditional deep neural network with the underlying laws of physics described by PDEs. We investigate the abilities of this relatively novel approach on thee diverse examples in order to give a good overview of its advantages and issues. Every problem is also solved via the finite element method, which serves as a reference. In addition to that, we propose the usage of pre-training, which is already present in other scientific areas. If we initialize the process of solving of one equation with a solution to a similar problem, in some settings, we were able to significantly reduce computation time, which is major drawback of PINNs. 1en_US
dc.description.abstractNeuronové sítě se stávají čím dál tím populárnějším nástrojem pro řešení diferenciál- ních rovnic. Jejich použití ztělesňuje koncept physics-informed neural network (PINN), který kombinuje tradiční hlubokou neuronovou síť s fyzikálními zákony v podobě par- ciálních diferenciálních rovnic. Možnosti tohoto relativně nového přístupu prozkoumáme na třech rozmanitých příkladech, abychom mohli přehledně formulovat jeho výhody a nevýhody. Každý z problémů je také řešen metodou konečných prvků, která slouží jako referenční přístup. Kromě toho navrhujeme použití předtrénovaní, které se běžně používá v jiných vědeckých oborech. Pokud inicializujeme proces řešení rovnice pomocí výsledku podobného problému, významně tím zkrátíme výpočetní čas, který je zásadním nedostatkem PINN. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectStrojové učení|hluboké učení|diferenciální rovnice|metoda konečných prvků|neuronová síťcs_CZ
dc.subjectMachine learning|deep learning|differential equations|finite element method|physics-informed neural networken_US
dc.titleHluboké učení pro řešení diferenciálních rovniccs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-13
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId249683
dc.title.translatedDeep learning for the solution of differential equationsen_US
dc.contributor.refereeKučera, Václav
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMatematické modelovánícs_CZ
thesis.degree.disciplineMathematical Modellingen_US
thesis.degree.programMatematické modelovánícs_CZ
thesis.degree.programMathematical Modellingen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické modelovánícs_CZ
uk.degree-discipline.enMathematical Modellingen_US
uk.degree-program.csMatematické modelovánícs_CZ
uk.degree-program.enMathematical Modellingen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csNeuronové sítě se stávají čím dál tím populárnějším nástrojem pro řešení diferenciál- ních rovnic. Jejich použití ztělesňuje koncept physics-informed neural network (PINN), který kombinuje tradiční hlubokou neuronovou síť s fyzikálními zákony v podobě par- ciálních diferenciálních rovnic. Možnosti tohoto relativně nového přístupu prozkoumáme na třech rozmanitých příkladech, abychom mohli přehledně formulovat jeho výhody a nevýhody. Každý z problémů je také řešen metodou konečných prvků, která slouží jako referenční přístup. Kromě toho navrhujeme použití předtrénovaní, které se běžně používá v jiných vědeckých oborech. Pokud inicializujeme proces řešení rovnice pomocí výsledku podobného problému, významně tím zkrátíme výpočetní čas, který je zásadním nedostatkem PINN. 1cs_CZ
uk.abstract.enNeural networks are becoming an ever more prominent method in the field of differen- tial equations. Their use is embodied in the concept of physics-informed neural network (PINN), which combines a traditional deep neural network with the underlying laws of physics described by PDEs. We investigate the abilities of this relatively novel approach on thee diverse examples in order to give a good overview of its advantages and issues. Every problem is also solved via the finite element method, which serves as a reference. In addition to that, we propose the usage of pre-training, which is already present in other scientific areas. If we initialize the process of solving of one equation with a solution to a similar problem, in some settings, we were able to significantly reduce computation time, which is major drawback of PINNs. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code2
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV