dc.contributor.advisor | Congreve, Scott | |
dc.creator | Vais, Matěj | |
dc.date.accessioned | 2023-11-07T01:32:46Z | |
dc.date.available | 2023-11-07T01:32:46Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/185325 | |
dc.description.abstract | Neural networks are becoming an ever more prominent method in the field of differen- tial equations. Their use is embodied in the concept of physics-informed neural network (PINN), which combines a traditional deep neural network with the underlying laws of physics described by PDEs. We investigate the abilities of this relatively novel approach on thee diverse examples in order to give a good overview of its advantages and issues. Every problem is also solved via the finite element method, which serves as a reference. In addition to that, we propose the usage of pre-training, which is already present in other scientific areas. If we initialize the process of solving of one equation with a solution to a similar problem, in some settings, we were able to significantly reduce computation time, which is major drawback of PINNs. 1 | en_US |
dc.description.abstract | Neuronové sítě se stávají čím dál tím populárnějším nástrojem pro řešení diferenciál- ních rovnic. Jejich použití ztělesňuje koncept physics-informed neural network (PINN), který kombinuje tradiční hlubokou neuronovou síť s fyzikálními zákony v podobě par- ciálních diferenciálních rovnic. Možnosti tohoto relativně nového přístupu prozkoumáme na třech rozmanitých příkladech, abychom mohli přehledně formulovat jeho výhody a nevýhody. Každý z problémů je také řešen metodou konečných prvků, která slouží jako referenční přístup. Kromě toho navrhujeme použití předtrénovaní, které se běžně používá v jiných vědeckých oborech. Pokud inicializujeme proces řešení rovnice pomocí výsledku podobného problému, významně tím zkrátíme výpočetní čas, který je zásadním nedostatkem PINN. 1 | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Strojové učení|hluboké učení|diferenciální rovnice|metoda konečných prvků|neuronová síť | cs_CZ |
dc.subject | Machine learning|deep learning|differential equations|finite element method|physics-informed neural network | en_US |
dc.title | Hluboké učení pro řešení diferenciálních rovnic | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-09-13 | |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 249683 | |
dc.title.translated | Deep learning for the solution of differential equations | en_US |
dc.contributor.referee | Kučera, Václav | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Matematické modelování | cs_CZ |
thesis.degree.discipline | Mathematical Modelling | en_US |
thesis.degree.program | Matematické modelování | cs_CZ |
thesis.degree.program | Mathematical Modelling | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické modelování | cs_CZ |
uk.degree-discipline.en | Mathematical Modelling | en_US |
uk.degree-program.cs | Matematické modelování | cs_CZ |
uk.degree-program.en | Mathematical Modelling | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Neuronové sítě se stávají čím dál tím populárnějším nástrojem pro řešení diferenciál- ních rovnic. Jejich použití ztělesňuje koncept physics-informed neural network (PINN), který kombinuje tradiční hlubokou neuronovou síť s fyzikálními zákony v podobě par- ciálních diferenciálních rovnic. Možnosti tohoto relativně nového přístupu prozkoumáme na třech rozmanitých příkladech, abychom mohli přehledně formulovat jeho výhody a nevýhody. Každý z problémů je také řešen metodou konečných prvků, která slouží jako referenční přístup. Kromě toho navrhujeme použití předtrénovaní, které se běžně používá v jiných vědeckých oborech. Pokud inicializujeme proces řešení rovnice pomocí výsledku podobného problému, významně tím zkrátíme výpočetní čas, který je zásadním nedostatkem PINN. 1 | cs_CZ |
uk.abstract.en | Neural networks are becoming an ever more prominent method in the field of differen- tial equations. Their use is embodied in the concept of physics-informed neural network (PINN), which combines a traditional deep neural network with the underlying laws of physics described by PDEs. We investigate the abilities of this relatively novel approach on thee diverse examples in order to give a good overview of its advantages and issues. Every problem is also solved via the finite element method, which serves as a reference. In addition to that, we propose the usage of pre-training, which is already present in other scientific areas. If we initialize the process of solving of one equation with a solution to a similar problem, in some settings, we were able to significantly reduce computation time, which is major drawback of PINNs. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |
thesis.grade.code | 2 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |