Show simple item record

Srovnávací analýza markovských stavových modelů pro dynamiku proteinu APOE pomocí neuronových sítí
dc.contributor.advisorSedlář, Jiří
dc.creatorKopko, Jakub
dc.date.accessioned2023-11-06T23:03:41Z
dc.date.available2023-11-06T23:03:41Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/183994
dc.description.abstractThis thesis leverages the CoVAMPnet neural network architecture to analyze the dy- namics of apolipoprotein E (APOE), a protein involved in the development of Alzheimer's disease. CoVAMPnet offers a versatile machine learning framework for extracting mean- ingful features from high-dimensional molecular dynamics data and constructing Markov state models to characterize protein conformational dynamics. By applying CoVAMPnet to APOE simulations, the thesis successfully captures the protein behavior by reveal- ing its key conformational states and structural transitions. These findings provide new insights into the dynamics of APOE and its potential role in Alzheimer's disease. The thesis also investigates the influence of a small molecule drug candidate 3SPA on APOE's conformational behavior, shedding further light on its therapeutic possibilities. Overall, this work demonstrates CoVAMPnet's effectiveness in analyzing and comparing the dy- namics of larger proteins in an interpretable manner, reinforcing its potential application for complex biomolecular studies. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectStrojové učení pro molekulární dynamiku|Neuronové sítě|Variační přístup k Markovským procesům|Modely Markovských stavů|APOE proteincs_CZ
dc.subjectMachine learning for molecular dynamics|Neural networks|Variational approach to Markov processes|Markov state models|APOE proteinen_US
dc.titleComparative Markov state analysis of APOE protein dynamics by neural networksen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-05
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId257828
dc.title.translatedSrovnávací analýza markovských stavových modelů pro dynamiku proteinu APOE pomocí neuronových sítícs_CZ
dc.contributor.refereeHoleňa, Martin
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputer Science - Artificial Intelligencecs_CZ
thesis.degree.disciplineComputer Science - Artificial Intelligenceen_US
thesis.degree.programComputer Science - Artificial Intelligencecs_CZ
thesis.degree.programComputer Science - Artificial Intelligenceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csComputer Science - Artificial Intelligencecs_CZ
uk.degree-discipline.enComputer Science - Artificial Intelligenceen_US
uk.degree-program.csComputer Science - Artificial Intelligencecs_CZ
uk.degree-program.enComputer Science - Artificial Intelligenceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThis thesis leverages the CoVAMPnet neural network architecture to analyze the dy- namics of apolipoprotein E (APOE), a protein involved in the development of Alzheimer's disease. CoVAMPnet offers a versatile machine learning framework for extracting mean- ingful features from high-dimensional molecular dynamics data and constructing Markov state models to characterize protein conformational dynamics. By applying CoVAMPnet to APOE simulations, the thesis successfully captures the protein behavior by reveal- ing its key conformational states and structural transitions. These findings provide new insights into the dynamics of APOE and its potential role in Alzheimer's disease. The thesis also investigates the influence of a small molecule drug candidate 3SPA on APOE's conformational behavior, shedding further light on its therapeutic possibilities. Overall, this work demonstrates CoVAMPnet's effectiveness in analyzing and comparing the dy- namics of larger proteins in an interpretable manner, reinforcing its potential application for complex biomolecular studies. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
thesis.grade.code1
dc.contributor.consultantŠivic, Josef
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV