dc.contributor.advisor | Sedlář, Jiří | |
dc.creator | Kopko, Jakub | |
dc.date.accessioned | 2023-11-06T23:03:41Z | |
dc.date.available | 2023-11-06T23:03:41Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/183994 | |
dc.description.abstract | This thesis leverages the CoVAMPnet neural network architecture to analyze the dy- namics of apolipoprotein E (APOE), a protein involved in the development of Alzheimer's disease. CoVAMPnet offers a versatile machine learning framework for extracting mean- ingful features from high-dimensional molecular dynamics data and constructing Markov state models to characterize protein conformational dynamics. By applying CoVAMPnet to APOE simulations, the thesis successfully captures the protein behavior by reveal- ing its key conformational states and structural transitions. These findings provide new insights into the dynamics of APOE and its potential role in Alzheimer's disease. The thesis also investigates the influence of a small molecule drug candidate 3SPA on APOE's conformational behavior, shedding further light on its therapeutic possibilities. Overall, this work demonstrates CoVAMPnet's effectiveness in analyzing and comparing the dy- namics of larger proteins in an interpretable manner, reinforcing its potential application for complex biomolecular studies. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Strojové učení pro molekulární dynamiku|Neuronové sítě|Variační přístup k Markovským procesům|Modely Markovských stavů|APOE protein | cs_CZ |
dc.subject | Machine learning for molecular dynamics|Neural networks|Variational approach to Markov processes|Markov state models|APOE protein | en_US |
dc.title | Comparative Markov state analysis of APOE protein dynamics by neural networks | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-09-05 | |
dc.description.department | Katedra softwaru a výuky informatiky | cs_CZ |
dc.description.department | Department of Software and Computer Science Education | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 257828 | |
dc.title.translated | Srovnávací analýza markovských stavových modelů pro dynamiku proteinu APOE pomocí neuronových sítí | cs_CZ |
dc.contributor.referee | Holeňa, Martin | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Computer Science - Artificial Intelligence | cs_CZ |
thesis.degree.discipline | Computer Science - Artificial Intelligence | en_US |
thesis.degree.program | Computer Science - Artificial Intelligence | cs_CZ |
thesis.degree.program | Computer Science - Artificial Intelligence | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra softwaru a výuky informatiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Software and Computer Science Education | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Computer Science - Artificial Intelligence | cs_CZ |
uk.degree-discipline.en | Computer Science - Artificial Intelligence | en_US |
uk.degree-program.cs | Computer Science - Artificial Intelligence | cs_CZ |
uk.degree-program.en | Computer Science - Artificial Intelligence | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | This thesis leverages the CoVAMPnet neural network architecture to analyze the dy- namics of apolipoprotein E (APOE), a protein involved in the development of Alzheimer's disease. CoVAMPnet offers a versatile machine learning framework for extracting mean- ingful features from high-dimensional molecular dynamics data and constructing Markov state models to characterize protein conformational dynamics. By applying CoVAMPnet to APOE simulations, the thesis successfully captures the protein behavior by reveal- ing its key conformational states and structural transitions. These findings provide new insights into the dynamics of APOE and its potential role in Alzheimer's disease. The thesis also investigates the influence of a small molecule drug candidate 3SPA on APOE's conformational behavior, shedding further light on its therapeutic possibilities. Overall, this work demonstrates CoVAMPnet's effectiveness in analyzing and comparing the dy- namics of larger proteins in an interpretable manner, reinforcing its potential application for complex biomolecular studies. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatiky | cs_CZ |
thesis.grade.code | 1 | |
dc.contributor.consultant | Šivic, Josef | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |