Show simple item record

Superpozice a ředění čítacích procesů v neživotním pojištění
dc.contributor.advisorPešta, Michal
dc.creatorRomaňák, Martin
dc.date.accessioned2023-07-24T11:57:24Z
dc.date.available2023-07-24T11:57:24Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/182503
dc.description.abstractThe thesis examines a model for representing the number of claims after merging or splitting different lines of business of an insurance company. The model is based on count- ing processes, the Poisson and the renewal processes are considered in particular. The operations of superposition and thinning are the proposed solution to this problem. We present the well-known results that the Poisson processes are closed under superposition and several types of thinning and explore the necessary conditions for this statement to also hold for renewal processes. Specifically, the previous work on the superposition of renewal processes is studied and further clarified, and an original result is derived for two types of thinning of a renewal process. The theoretical results are then used to analyze real insurance data in a model situation when an insurance company wants to estimate the future number of claims after merging two of its lines of business. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectcounting processes|superposition|thinning|non-life insurance|Poisson process|renewal processen_US
dc.subjectčítací procesy|superpozice|ředění|neživotní pojištění|Poissonův proces|proces obnovycs_CZ
dc.titleSuperposition and thinning of counting processes in non-life insuranceen_US
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-21
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId250923
dc.title.translatedSuperpozice a ředění čítacích procesů v neživotním pojištěnícs_CZ
dc.contributor.refereeKříž, Pavel
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.programFinanční matematikacs_CZ
thesis.degree.programFinancial Mathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csFinanční matematikacs_CZ
uk.degree-program.enFinancial Mathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe thesis examines a model for representing the number of claims after merging or splitting different lines of business of an insurance company. The model is based on count- ing processes, the Poisson and the renewal processes are considered in particular. The operations of superposition and thinning are the proposed solution to this problem. We present the well-known results that the Poisson processes are closed under superposition and several types of thinning and explore the necessary conditions for this statement to also hold for renewal processes. Specifically, the previous work on the superposition of renewal processes is studied and further clarified, and an original result is derived for two types of thinning of a renewal process. The theoretical results are then used to analyze real insurance data in a model situation when an insurance company wants to estimate the future number of claims after merging two of its lines of business. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV