Show simple item record

The Möbius function of combinatorial posets
dc.contributor.advisorJelínek, Vít
dc.creatorKopfová, Lenka
dc.date.accessioned2022-07-25T13:10:38Z
dc.date.available2022-07-25T13:10:38Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/174598
dc.description.abstractIn this thesis we study the poset of signed permutations under the pattern containment order. A signed permutation is a permutation in which each entry has a plus or a minus sign assigned to it. Therefore signed permutations are a generalization of unsigned permutations as those correspond to picking the plus sign for each entry. We present several results regarding the M¨obius function of signed permutations, some of which are generalizations of those for unsigned ones. Moreover, we study the poset isomorphism between intervals of the poset of signed permutations, which ensures that two intervals have the same value of the M¨obius function.en_US
dc.description.abstractV této práci se zabýváme částečně uspořádanou množinou znaménkových permutací. Uspořádání na permutacích je zde definováno pomocí obsahování jako podpermutace. Znaménková permutace je taková permutace, ve které má každý prvek zvolené plus nebo mínus znaménko. Znaménkové permutace jsou tak zobecněním neznamínkových permutací, protože ty můžeme dostat tak, že každému prvku zvolíme plus znaménko. Ukážeme několik výsledků týkající se Möbiovy funkce znaménkových permutací, některá z nich jsou zobecněním už dříve dokázaných vět pro neznaménkové permutace. Práce se také zabývá izomorfismem částečně uspořádaných množin znaménkových permutací. Izomor- fismus pak mimo jiné zaručuje, že dané dva intervaly mají stejnou hodnotu Möbiovy funkce.cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMöbiova funkce|permutacecs_CZ
dc.subjectMöbius function|permutationen_US
dc.titleMöbiova funkce kombinatorických uspořádánícs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-06-23
dc.description.departmentComputer Science Institute of Charles Universityen_US
dc.description.departmentInformatický ústav Univerzity Karlovycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId240184
dc.title.translatedThe Möbius function of combinatorial posetsen_US
dc.contributor.refereeKantor, Ida
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineInformatika se specializací Obecná informatikacs_CZ
thesis.degree.disciplineComputer Science with specialisation in General Computer Scienceen_US
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Informatický ústav Univerzity Karlovycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Computer Science Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika se specializací Obecná informatikacs_CZ
uk.degree-discipline.enComputer Science with specialisation in General Computer Scienceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci se zabýváme částečně uspořádanou množinou znaménkových permutací. Uspořádání na permutacích je zde definováno pomocí obsahování jako podpermutace. Znaménková permutace je taková permutace, ve které má každý prvek zvolené plus nebo mínus znaménko. Znaménkové permutace jsou tak zobecněním neznamínkových permutací, protože ty můžeme dostat tak, že každému prvku zvolíme plus znaménko. Ukážeme několik výsledků týkající se Möbiovy funkce znaménkových permutací, některá z nich jsou zobecněním už dříve dokázaných vět pro neznaménkové permutace. Práce se také zabývá izomorfismem částečně uspořádaných množin znaménkových permutací. Izomor- fismus pak mimo jiné zaručuje, že dané dva intervaly mají stejnou hodnotu Möbiovy funkce.cs_CZ
uk.abstract.enIn this thesis we study the poset of signed permutations under the pattern containment order. A signed permutation is a permutation in which each entry has a plus or a minus sign assigned to it. Therefore signed permutations are a generalization of unsigned permutations as those correspond to picking the plus sign for each entry. We present several results regarding the M¨obius function of signed permutations, some of which are generalizations of those for unsigned ones. Moreover, we study the poset isomorphism between intervals of the poset of signed permutations, which ensures that two intervals have the same value of the M¨obius function.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV