Zobrazit minimální záznam

dc.contributor.authorKusák, Michal
dc.date.accessioned2021-11-25T04:53:07Z
dc.date.available2021-11-25T04:53:07Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/168193
dc.description.abstractFractal geometry methods allow one to quantitatively describe self-similar or self-affined landscape shapes and facilitate the complex/ holistic study of natural objects in various scales. They also allow one to compare the values of analyses from different scales (Mandelbrot 1967; Burrough 1981). With respect to the hierarchical scale (Bendix 1994) and fractal self-similarity (Mandelbrot 1982; Stuwe 2007) of the fractal landscape shapes, suitable morphometric characteristics have to be used, and a suitable scale has to be selected, in order to evaluate them in a representative and objective manner. This review article defines and compares: 1) the basic terms in fractal geometry, i.e. fractal dimension, self-similar, self-affined and random fractals, hierarchical scale, fractal self-similarity and the physical limits of a system; 2) selected methods of determining the fractal dimension of complex geomorphic networks. From the fractal landscape shapes forming complex networks, emphasis is placed on drainage patterns and valley networks.en
dc.description.abstractIf the drainage patterns or valley networks are self-similar fractals at various scales, it is possible to determine the fractal dimension by using the method “fractal dimension of drainage patterns and valley networks according to Turcotte (1997)”. Conversely, if the river and valley networks are self-affined fractals, it is appropriate to determine fractal dimension by methods that use regular grids. When applying a regular grid method to determine the fractal dimension on valley schematic networks according to Howard (1967), it was found that the “fractal dimension of drainage patterns and valley networks according to Mandelbrot (1982)”, the “box-counting dimension according to Turcotte (2007a)” and the “capacity dimension according to Tichý (2012)” methods show values in the open interval (1, 2). In contrast, the value of the “box-counting dimensions according to Rodríguez-Iturbe & Rinaldo (2001) / Kolmogorov dimensions according to Zelinka & Včelař & Čandík (2006)” was greater than 2. Therefore, to achieve values in the open interval (1, 2) more steps are needed to be taken than in the case of other fractal dimensions.en
dc.language.isoen
dc.language.isocs
dc.titleReview article :methods of fractal geometry used in the study of complex geomorphic networksen
dc.typePříspěvek v časopisucs
dc.description.startPage99
dc.description.endPage110
dcterms.isPartOf.nameActa Universitatis Carolinae. Geographicaen
dcterms.isPartOf.journalYear2014
dcterms.isPartOf.journalVolume49
dcterms.isPartOf.journalIssue2
dcterms.isPartOf.issn0300-5402
dc.identifier.lisID000208220


Soubory tohoto záznamu

Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV