Show simple item record

Bootstrap methods for dependent observations
dc.contributor.advisorPrášková, Zuzana
dc.creatorPetrásek, Jakub
dc.date.accessioned2017-04-10T10:47:31Z
dc.date.available2017-04-10T10:47:31Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/14881
dc.description.abstractThis Diploma thesis deals with principles, asymptotic properties and comparison of bootstrap methods for dependent observations. In the first chapter principal ideas and benefits of bootstrap method for independent data are introduced. Subsequently, these knowledge are applied to data exhibiting dependency. Block, frequency and sieve bootstrap methods are presented. Afterwards, principle of each method is described in broader context, asymptotic properties are presented and some of them are derived. Strong dependency of block bootstrap method on block length is discussed and algorithms for empirical choice of optimal block length are described. The main aim of this work is to compare discussed methods from theoretical point of view and via simulation study. Eventually, a few examples, which are based on real data sets, are presented. Discussed principles are implemented in software R and software Fortran.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleMetody bootstrap pro závislá pozorovánícs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-05-12
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId45840
dc.title.translatedBootstrap methods for dependent observationsen_US
dc.contributor.refereeKaňková, Vlasta
dc.identifier.aleph000971501
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThis Diploma thesis deals with principles, asymptotic properties and comparison of bootstrap methods for dependent observations. In the first chapter principal ideas and benefits of bootstrap method for independent data are introduced. Subsequently, these knowledge are applied to data exhibiting dependency. Block, frequency and sieve bootstrap methods are presented. Afterwards, principle of each method is described in broader context, asymptotic properties are presented and some of them are derived. Strong dependency of block bootstrap method on block length is discussed and algorithms for empirical choice of optimal block length are described. The main aim of this work is to compare discussed methods from theoretical point of view and via simulation study. Eventually, a few examples, which are based on real data sets, are presented. Discussed principles are implemented in software R and software Fortran.en_US
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV