Remixing OSM maps using recurrent neural networks
Generování map z OSM pomocí rekurentních neuronových sítí
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/148379Identifikátory
SIS: 237731
Kolekce
- Kvalifikační práce [11178]
Autor
Vedoucí práce
Oponent práce
Kruliš, Martin
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Programování a softwarové systémy
Katedra / ústav / klinika
Katedra softwarového inženýrství
Datum obhajoby
10. 9. 2021
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Dobře
Klíčová slova (česky)
rekurentní neuronové sítě|open street map|náhodně generovaná médiaKlíčová slova (anglicky)
recurrent neural networks|open street map|random generated mediaGenerovanie náhodných realistických máp je žiadaná metóda generovania obsahu pre zábavný priemysel. Neurónové siete poskytujú výkonné výpoč- tové schopnosti, ktoré sa osvedčili v mnohých oblastiach. Táto práca popisuje algoritmus, ktorý prispôsobuje dáta z reálneho sveta pre učenie Rekurent- ných Neurónových Sietí (RNN) inšpirované pixelovo rekurentnými RNN. Al- goritmus bol zostrojený na generovanie mapy nadmorských výšok, ciest, riek a budov. Výsledky sú testované a vyhodnotené na viacerých vybraných oblastiach z reálneho sveta. Tento algoritmus ukazuje schopnosť sa učiť a vytvárať náhodné realistické mapy založené na vstupných údajoch užívateľa a tréningových dátach. Generácia ciest a riek ukázala slabšie výsledky. Gen- erácia budov ukázala neuspokojivé výsledky. 1
Generation of random realistic maps is a highly desirable content creation method for entertainment industry. Neural networks provide powerful com- putational capabilities proven useful in many fields. This thesis describes an algorithm that adapts real-world data to train Recurrent Neural Networks (RNNs) inspired by the pixel RNNs. An algorithm is constructed to gener- ate a map of altitudes, roads, rivers and buildings. The results are tested and evaluated on multiple selected real-world regions. It shows the ability of RNNs to learn and create random realistic maps. Algorithm generates real- istic altitude maps reflecting user input and training dataset. The creation of roads and rivers was met with weaker results. The creation of buildings was met with unsatisfactory results. 1