Show simple item record

The Cramér-Wold theorem
dc.contributor.advisorNagy, Stanislav
dc.creatorPešek, Matěj
dc.date.accessioned2022-04-06T11:28:10Z
dc.date.available2022-04-06T11:28:10Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/147669
dc.description.abstractCramérova-Woldova věta říká, že každou d-rozměrnou (borelovskou) pravděpodob- nostní míru P dokážeme plně charakterizovat P-pravděpodobnostmi všech poloprostorů (množin bodů ležících na jednu stranu od nějaké nadroviny). Ekvivalentně, rozdělení d-rozměrného náhodného vektoru X je jednoznačně určeno všemi rozděleními projekcí ⟨X, u⟩, pro u z jednotkové sféry. Cílem práce je detailní zpracování důkazu této důle- žité věty, a diskuze o jejích možných zobecněních. Potřebujeme znát skutečně všechny projekce ⟨X, u⟩ pro každé u? Projekce v kolika směrech musíme znát, abychom doká- zali určit míru P, která přiděluje n různým bodům pravděpodobnosti 1/n? Jak souvisí Cramérova-Woldova věta s podobnými výsledky známými mimo teorii pravděpodobnosti? 1cs_CZ
dc.description.abstractThe Cramér-Wold theorem asserts, that every d-dimensional (Borel) probability me- asure can be characterized by the P-probabilities of all halfspaces (sets of points lying on one side of a given hyperplane). Equivalently, the distribution of each d-dimensional random vector X is fully described by all distributions of projections ⟨X, u⟩, for u from the unit sphere. The goal of this thesis is a detailed proof of this important theorem, and a discussion on its potential extensions. Do we really need to know all projections ⟨X, u⟩ for each u? Projections in how many directions are necessary to be known to be able to determine a measure P, which assigns to n distinct points masses 1/n? How does the Cramér-Wold theorem relate to similar results used outside of the probability theory? 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmeasure|characteristic funcion|projection|characterization of measuresen_US
dc.subjectmíra|charakteristická funkce|projekce|charakterizace měrcs_CZ
dc.titleCramérova-Woldova větacs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-09-02
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId227580
dc.title.translatedThe Cramér-Wold theoremen_US
dc.contributor.refereeBeneš, Viktor
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCramérova-Woldova věta říká, že každou d-rozměrnou (borelovskou) pravděpodob- nostní míru P dokážeme plně charakterizovat P-pravděpodobnostmi všech poloprostorů (množin bodů ležících na jednu stranu od nějaké nadroviny). Ekvivalentně, rozdělení d-rozměrného náhodného vektoru X je jednoznačně určeno všemi rozděleními projekcí ⟨X, u⟩, pro u z jednotkové sféry. Cílem práce je detailní zpracování důkazu této důle- žité věty, a diskuze o jejích možných zobecněních. Potřebujeme znát skutečně všechny projekce ⟨X, u⟩ pro každé u? Projekce v kolika směrech musíme znát, abychom doká- zali určit míru P, která přiděluje n různým bodům pravděpodobnosti 1/n? Jak souvisí Cramérova-Woldova věta s podobnými výsledky známými mimo teorii pravděpodobnosti? 1cs_CZ
uk.abstract.enThe Cramér-Wold theorem asserts, that every d-dimensional (Borel) probability me- asure can be characterized by the P-probabilities of all halfspaces (sets of points lying on one side of a given hyperplane). Equivalently, the distribution of each d-dimensional random vector X is fully described by all distributions of projections ⟨X, u⟩, for u from the unit sphere. The goal of this thesis is a detailed proof of this important theorem, and a discussion on its potential extensions. Do we really need to know all projections ⟨X, u⟩ for each u? Projections in how many directions are necessary to be known to be able to determine a measure P, which assigns to n distinct points masses 1/n? How does the Cramér-Wold theorem relate to similar results used outside of the probability theory? 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV