Show simple item record

Rozpoznávání částečně zakrytých objektů
dc.contributor.advisorFlusser, Jan
dc.creatorKrolupper, Filip
dc.date.accessioned2018-11-30T11:19:05Z
dc.date.available2018-11-30T11:19:05Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/14323
dc.description.abstractIn this thesis we focus on partially occluded object recognition under geometric transformations. Objects are represented by their contours. Depending on the kind of geometric transformation and robustness to occlusion we introduce different solutions. Our results are applicable in industry, robotics, 3D vision, forensics, etc. We propose three novel methods for partially occluded object recognition. The major contribution of all our methods is a creation of features. Features are designed to be local and invariant to appropriate geometric transformations. We use mostly standard feature matching to prove properties of designed features. The first method deals only with translation, rotation and scaling (Euclidian transformation) and is based on contour approximation by circle arcs. The parameters of the circle arcs seem to be suitable features. The second method deals with affine transformation and is based on polygonal approximation of contours and, moreover, is robust to additive noise. The second method splits the contour into parts using inflexion points and transforms every part into both normalized shape and position. The parameters of standard shapes of every part are the desired features. The third method deals also with affine transformation. It splits the object into parts using a novel, cutting...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleRecognition of Partially Occluded Objectsen_US
dc.typedizertační prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-04-28
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId39958
dc.title.translatedRozpoznávání částečně zakrytých objektůcs_CZ
dc.contributor.refereeSojka, Eduard
dc.contributor.refereePeters, Gabriele
dc.identifier.aleph001116058
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineSoftwarové systémycs_CZ
thesis.degree.disciplineSoftware Systemsen_US
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csSoftwarové systémycs_CZ
uk.degree-discipline.enSoftware Systemsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enIn this thesis we focus on partially occluded object recognition under geometric transformations. Objects are represented by their contours. Depending on the kind of geometric transformation and robustness to occlusion we introduce different solutions. Our results are applicable in industry, robotics, 3D vision, forensics, etc. We propose three novel methods for partially occluded object recognition. The major contribution of all our methods is a creation of features. Features are designed to be local and invariant to appropriate geometric transformations. We use mostly standard feature matching to prove properties of designed features. The first method deals only with translation, rotation and scaling (Euclidian transformation) and is based on contour approximation by circle arcs. The parameters of the circle arcs seem to be suitable features. The second method deals with affine transformation and is based on polygonal approximation of contours and, moreover, is robust to additive noise. The second method splits the contour into parts using inflexion points and transforms every part into both normalized shape and position. The parameters of standard shapes of every part are the desired features. The third method deals also with affine transformation. It splits the object into parts using a novel, cutting...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV